Я извиняюсь, но не только таких выморочных. Еще, например, и таких тоже, видимо, выморочных:

,

,

,

.
Эти два решения являются очень частными. Если бы меня кто воодушевил, то я взялся бы найти гораздо менее выморочные решения.
Если честно, то я удивлен, что нашлись даже такие решения. А можно поискать и что-то повнушительней. Но дело не в степени выморочности решений. Дело в богатстве их свойств. А их пока не густо. Одна единственная связь дивергенции ускорения с дивергенцией скорости. Про дивергенцию высших производных это я поторопился.
Кстати, вот такой вопрос. Если дивергенции всех производных по времени вектор-функции равны нулю в точке, то будет ли функция тождественной константой? Или что-то в этом роде.