2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Окружности и треугольник
Сообщение13.02.2011, 15:02 


21/06/06
1721
Вот на первый взгляд кажется, что
1) Из всех окружностей, которые можно поместить внутрь треугольника, наибольшей является та, которая вписана в него.
2) Из всех окружностей, которые могут вмещать треугольник, наименьшей является та, которая описана вокруг него.

Но все равно, терзают смутные сомнения, что может это и не так.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 15:12 


22/09/09
374
Sasha2 в сообщении #412488 писал(а):
Вот на первый взгляд кажется, что
1) Из всех окружностей, которые можно поместить внутрь треугольника, наибольшей является та, которая вписана в него.
2) Из всех окружностей, которые могут вмещать треугольник, наименьшей является та, которая описана вокруг него.

Но все равно, терзают смутные сомнения, что может это и не так.


Давайте думать по бытовому.
Поместим маленькую окружность внутрь треугольника и начнем ее увеличивать. Если окружность не касается ни одной стороны, то ясно что ее можно еще увеличить. Если окружность касается не всех сторон, то ее можно сдвинуть в сторону той стороны, которой она не касается, так, что она не будет опять касаться ни какой стороны, значит ее опять можно увеличить. А окружность с прямой может либо пересекаться (тогда она будет выходить за пределы треугольника), либо касаться ее. Следовательно, окружность нельзя больше увеличить и не выйти за границы треугольника, когда она касается всех его сторон.
Аналогично с описанной.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 15:45 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
1) Проводим касательные, параллельные сторонам - получится треугольник, подобный исходному с коэффициентом подобия <1.
2) С описанной надо подумать, как рассуждения на бытовом уровне превратить в доказательство.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 15:50 
Заслуженный участник


27/06/08
4062
Волгоград
Sasha2 в сообщении #412488 писал(а):
Вот на первый взгляд кажется, что
1) Из всех окружностей, которые можно поместить внутрь треугольника, наибольшей является та, которая вписана в него.
2) Из всех окружностей, которые могут вмещать треугольник, наименьшей является та, которая описана вокруг него.

Но все равно, терзают смутные сомнения, что может это и не так.

Правильно терзают!

-- 13 фев 2011, 15:51 --

Shtirlic в сообщении #412492 писал(а):
Аналогично с описанной.
А вот и нет!

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 15:53 
Заслуженный участник


11/05/08
32166
Sasha2 в сообщении #412488 писал(а):
2) Из всех окружностей, которые могут вмещать треугольник, наименьшей является та, которая описана вокруг него.

Это верно тогда и только тогда, когда треугольник не тупоугольный.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 16:09 


22/09/09
374
VAL в сообщении #412516 писал(а):
Shtirlic в сообщении #412492 писал(а):
Аналогично с описанной.
А вот и нет!


Согласен, погорячился, не подумал. :oops:

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 17:10 


21/06/06
1721
Ну хорошо, пока со вписанной разбираться буду.
Вот можно ли так превратить бытовое рассуждение в доказательство?

Рассматриваем произвольную точку внутри треугольника.. Ясно, что максимальный радиус окружности, который можно описать, имея эту точку центром, есть минимальное значение из трех перпендикуляров, которые мы опускаем на три стороны нашего трегольника. Остается показать, что это значение меньше радиуса вписнной окружности. Понятно, что наверно средствами диффиренциального исчисления можно решить эту задачу. Но хотелось бы получить решение в стиле задачи: Показать, что из всех точек, лежащих внутри выпуклого четырехугольника точка пересечения его диагоналей является той точкой, сумма расстояний от которой до его четырех вершин минимальна.

-- Вс фев 13, 2011 18:25:57 --

Да все, по моему получилось.
Простая вообщем формула $S=pr$, где
$S$ - это площадь треугольника
$p$ - его полупериметр
$r$ - радиус вписанной окружности
позволяет понять, почему вписанная окружность действительно является максимальной из всех окружностей, которые могут быть вложены в данный треугольник.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 17:27 
Заслуженный участник


11/05/08
32166
bot в сообщении #412513 писал(а):
С описанной надо подумать, как рассуждения на бытовом уровне превратить в доказательство.

Для каждой точки $M$ плоскости рассмотрим максимум расстояний от этой точки до всех точек треугольника. Пусть наименьший из этих максимумов достигается в точке $M_0$. Тогда именно в этой точке и должен находиться центр наименьшей окружности, захватывающей треугольник.

Так вот: если треугольник остроугольный, то точка $M_0$ -- это центр описанной окружности. А если тупоугольный -- то середина наибольшей стороны.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 18:50 
Заслуженный участник


11/05/08
32166
Sasha2 в сообщении #412562 писал(а):
Простая вообщем формула $S=pr$, где
$S$ - это площадь треугольника
$p$ - его полупериметр
$r$ - радиус вписанной окружности
позволяет понять, почему вписанная окружность действительно является максимальной из всех окружностей, которые могут быть вложены в данный треугольник.

А как, собственно, помогает?... При чём тут вообще площади?...

bot в сообщении #412513 писал(а):
1) Проводим касательные, параллельные сторонам - получится треугольник, подобный исходному с коэффициентом подобия <1.

Это, конечно, хорошо, но доказывает лишь, что оптимальная окружность не меньше вписанной. А надо ещё, говоря формально, доказать, что она не может быть и больше.

Наверное, тут лучше тоже через расстояния, но -- до сторон. Окружность содержится в треугольнике тогда и только тогда, когда её радиус не больше минимального из расстояний от её центра до всех трёх сторон (и, конечно, центр лежит внутри треугольника). Центр вписанной окружности, очевидно, является той из внутренних точек треугольника, для которой минимум расстояний до сторон принимает максимальное значение. Поэтому именно вписанная окружность, и только она, и является максимальной.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение13.02.2011, 19:01 


21/06/06
1721
А потому что при она еще при трех перпендикулярах, проведенных из некоторой точки трансформируется вот в такую
$S=\frac{ar_1+b_r_2+cr_3}{2}$, откуда легко усматривается, что минимальное значение этих $r_1, r_2, r_3$ не может быть более радиуса вписанной окружности.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение14.02.2011, 07:36 


21/06/06
1721
Кстати, попутно замечаем, что следующее утверждение также справедливо :
Если из некоторой точки, лежащей внутри треугольника, опустить перпендикуляры на три его стороны, то тогда радиус окружности, вписанной в этот треугольник, не меньше самого меньшего из этих трех перпендикуляров и не больше самого большего из них.

 Профиль  
                  
 
 Re: Окружности и треугольник
Сообщение14.02.2011, 14:46 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
ewert в сообщении #412589 писал(а):
Это, конечно, хорошо, но доказывает лишь, что оптимальная окружность не меньше вписанной.

Ну почему же? Если окружность не касается хотя бы одной стороны, то построенный треугольник строго сожмётся, так как лежит строго внутри исходного. Чтобы из него получить исходный, надо его строго раздуть, вместе с ним строго раздуется исходная окружность, которая теперь будет вписанной.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group