2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Борелевское отображение
Сообщение10.11.2010, 16:08 
Заслуженный участник


13/12/05
4620
Пусть $\varphi\colon K\to M$ -- отображение между компактными метрическими пространствами. Известно, что для любой непрерывной функции $f\colon M\to [0,1]$ функция $f\circ\varphi\colon K\to [0,1]$ является борелевской на $K$. Доказать, что $\varphi$ -- борелевское отображение.

 Профиль  
                  
 
 Re: Борелевское отображение
Сообщение10.11.2010, 17:06 
Заслуженный участник
Аватара пользователя


14/02/07
2648

(Оффтоп)

Для замкнутого $F\subset M$ возьмем прообраз нуля при $f\circ \varphi$, $f(x)=d(x,F)/\mathrm{diam}\, M$. Всё?

 Профиль  
                  
 
 Re: Борелевское отображение
Сообщение10.11.2010, 17:10 
Заслуженный участник


13/12/05
4620
Да, :-) Тупая задачка.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: scwec


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group