Пусть у нас есть аналог правильного треугольника в

-мерном евклидовом пространстве. Выберем такой, у которого стороны

и центр в начале координат. К тому же можно ограничить все, кроме первой, координаты одной из его вершин нулями. (Какое-то корявое описание получилось...) А теперь вопрос: как проще всего найти координаты всех вершин такой фигуры? (Как оказывается, этих ограничений в общем недостаточно. Думаю, можно координаты остальных, кроме двух, точек, тоже сделать нулями, но у каждой точки на одну "свободную" координату больше, итого они будут лежать в разных выбранных многообразиях размерностей от

до

. Надеюсь, после этого фигура задаётся однозначно.) Не думаю, что есть какая-то формула (если только не рекуррентная), а за алгоритм спасибо скажу. Только если это не алгоритм составления соответствующих уравнений и их решения — это у меня и так есть, но мало.

Потому что Mathematica сгенерированную собой же кипу уравнений для 4-треугольника решить пока не смогла... Ещё бы, 15 уравнений относительно 20 переменных-координат! Правда, у меня одна из пяти точек там зафиксирована с тремя нулями в координатах, а ещё одна с двумя нулями и ещё одна с одним — нет. Стало бы 18 уравнений, что всё равно мало, чтобы ей долго не пересчитывать. Потому и обращаюсь за советом.