Я рад, что Вы строите рассуждения по законам логики, действительно, признав произвольность в выборе знака, всё равно
необходимо снять неоднозначность, установив уже из внешнего контекста правило выбора из произвольного множества.
Пусть внешним контекстом будет текст определения функции. Тогда знак внутри круглых скобок это «знак, который ... означает переменную, пробегающую множество
.» Подтверждаю согласие с этим.
То есть
и
можете поставить, а
- нет.
А это мы еще посмотрим... :)
Давайте, чтобы сбить психологическую инерцию и оставить только логику, сменим знак икс на знак «a». Запишем внешний контекст, который станет одной из исходных посылок. Это будет Ваше определение функции:
Функцией называется соответствие , которое каждому элементу множества сопоставляет некоторый элемент множества . при этом называется областью определения, а — (формальной) областью значений функции . Запись означает, что есть функция, определенная на и принимающая значения в .
Приведенному выше определению должен однозначно соответствовать выбор знака «a» внутри круглых скобок, и соответствующая запись будет тоже однозначной:
Согласны?
А определение это, если Вам еще интересно, вот даже в Википедии есть:
Мда. ну.... хм. Пожалуй, не смогу избавиться от подозрения, что символьная запись без единого слова из метаязыка может быть однозначно истолкована. К сожалению, там где нет однозначности, там противоречие.
Мне интересно, почему так не любят эту энциклопедию
Виноградова здесь? Директор Математического института им. В. А. Стеклова, возглавлял который 50 лет, написал настолько бредовую энциклопедию? Может, не мог найти толковых авторов в редакционную коллегию? Это самый обширный математический контекст, написанный
одним коллективом уважаемого института. Кому, как не им доверять в отсутствии порочного круга в определениях и согласованности различных разделов математики, начиная с единообразного типографического оформления, и заканчивая едиными символьными обозначениями, и семантическими смыслами... Кому? Википедии? Это отличный сборник ключевых слов запрашиваемой по теме. При полном отсутствием логических связей. (Линк на страницу это не логическая связь). Телефонная книга.