e7e5Вы сначала определитесь с понятием "равномерность".
Например, у меня это понятие ассоциируется с тем, что поверхность сферы можно разделить на

одинаковых частей, центром симметрии каждой из которых будет одна из точек. При таком раскладе под категорию "равномерность" даже экстремальные точки (точки, расположенные с учетом кулоновских сил) не подходят, не говоря уже о трех точках, равномерно распределенных по экватору.
Если разрезать сферу по меридианам между точками, разве они не окажутся в центрах симметрии кусков? Причём при любом количестве точек.