2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Неравенство
Сообщение07.04.2010, 18:36 


27/01/10
260
Россия
Подскажите, верно ли утверждение:
Пусть $p_1,\ldots,p_k$ - целые числа, $p_i\ge1$ ($\forall i=1,\ldots,k$), $p_1+\ldots+p_k=n$, где $p$ и $k$ - некоторые фиксированные целые числа, $k\in[2,n]$. Тогда: $$p_1^{p_1}\cdot\ldots\cdot p_k^{p_k}\ge\left(\frac{n}{k}\right)^n.$$
И если да, то как его доказывать?

 Профиль  
                  
 
 
Сообщение07.04.2010, 19:44 
Заслуженный участник


26/06/07
1929
Tel-aviv
cyb12 в сообщении #307389 писал(а):
Подскажите, верно ли утверждение:
Пусть $p_1,\ldots,p_k$ - целые числа, $p_i\ge1$ ($\forall i=1,\ldots,k$), $p_1+\ldots+p_k=n$, где $p$ и $k$ - некоторые фиксированные целые числа, $k\in[2,n]$. Тогда: $$p_1^{p_1}\cdot\ldots\cdot p_k^{p_k}\ge\left(\frac{n}{k}\right)^n.$$
И если да, то как его доказывать?

Оно верно! Воспользуйтесь тем, что $f(x)=x\ln x$ - выпуклая функция. :wink:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group