2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Alpha из математических констант
Сообщение08.03.2010, 11:34 
Подогнать-то можно всё что угодно. Вопрос в том как эта подгонка обоснована. Вот если бы было $\alpha=\pi$, то интересно :)

 
 
 
 Re: Alpha из математических констант
Сообщение08.03.2010, 11:46 
Аватара пользователя
К тому же ваше альфа совпадает с настоящим (даже с учётом погрешностей) только первыми цифрами.

 
 
 
 Re: Alpha из математических констант
Сообщение08.03.2010, 13:14 
meduza в сообщении #295818 писал(а):
К тому же ваше альфа совпадает с настоящим (даже с учётом погрешностей) только первыми цифрами.

Первыми? А Вам сколько этих первых надо? Четыре совпадают.
Тут, на одном из форумов, мне сунули в нос такую формулу:
$\frac 1\alpha=(4\pi)^2(\frac{\pi^2}{15})^{1/3}$
Говорят, это формула самого Дирака. Цитирую: "У Дирака было проще".

 
 
 
 Re: Alpha из математических констант
Сообщение08.03.2010, 17:19 
Аватара пользователя
BoBuk в сообщении #295834 писал(а):
А Вам сколько этих первых надо?

Ровно столько, чтобы соответствовало точности экспериментального значения.

(Оффтоп)

И лично непонятны все эти выкрутасы с выражением какой-то физической константы через математические. Смысла в упор не вижу. Физические постоянные отражают особенности реального мира и к математике не имеют никакого отношения, ибо последняя с внешним миром вообще не связана. (Кстати, через физические константы ваша альфа прекрасно выражается: $\alpha = \dfrac{e^2}{4\pi\varepsilon_0\hbar c}$.) Короче, толку ни практического, ни научного в вашей игре циферками нету.

 
 
 
 Re: Alpha из математических констант
Сообщение08.03.2010, 23:27 
meduza в сообщении #295887 писал(а):
Ровно столько, чтобы соответствовало точности экспериментального значения.

К этому и стремимся. :)
Но по ходу дела выясняются очень интересные вещи.
Мною упущена красивейшая формула
$ln(cos(a))=1$
которая точнее моей.
Но она так же не даёт абсолютно совпадающего значения с экспериментальным.
Но тогда тем более интересно. Интересна сама природа расхождений.

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 10:11 
Аватара пользователя
BoBuk в сообщении #295993 писал(а):
meduza в сообщении #295887 писал(а):
Ровно столько, чтобы соответствовало точности экспериментального значения.

К этому и стремимся. :)
Но по ходу дела выясняются очень интересные вещи.
Мною упущена красивейшая формула
$ln(cos(a))=1$
которая точнее моей.
Но она так же не даёт абсолютно совпадающего значения с экспериментальным.
Но тогда тем более интересно. Интересна сама природа расхождений.

у косинуса область значение вместо $[-1;1]$ теперь $[-e;e]$? ибо $\ln e=1$, если имелось в виду $\ln (\cos \alpha) \approx 0$, то это очевидно, т.к. ваша $\alpha \approx 0$, $\ln(\cos 0) = \ln 1 = 0$ и ничего в этом красивого по-моему нет

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 11:09 
BapuK в сообщении #296038 писал(а):
... если имелось в виду $\ln (\cos \alpha) \approx 0$

Пардон, но $\ln (\cos \alpha) \approx 1$
С чего Вы взяли, что стремится к 0?

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 11:35 
$\ln\cos\left(\dfrac{1}{0.00729735253765}\right)=-1.000020881660595$

ТщательнЕе надо.

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 12:09 
ewert в сообщении #296049 писал(а):
$\ln\cos\left(\dfrac{1}{0.00729735253765}\right)=-1.000020881660595$

ТщательнЕе надо.

Совершенно справедливо. Можно даже и точнее, но после точки четыре нуля. Всего четыре. Хотелось бы как можно больше. Но не получается. Не существует такой формулы.

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 12:19 
Аватара пользователя
BoBuk в сообщении #296047 писал(а):
BapuK в сообщении #296038 писал(а):
... если имелось в виду $\ln (\cos \alpha) \approx 0$

Пардон, но $\ln (\cos \alpha) \approx 1$
С чего Вы взяли, что стремится к 0?

$\ln(\cos (0,00729746384339)) \approx \ln(0,999999991889) \approx -0,0000000081 \approx 0$ или вы имели в виду какую-то другую альфу? :oops: может конечн в паре знаков напутал но вроде все верно $\ln(\cos(\alpha))\approx 0$

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 13:08 
BapuK в сообщении #296058 писал(а):
$\ln(\cos (0,00729746384339)) \approx \ln(0,999999991889) \approx -0,0000000081 \approx 0$ или вы имели в виду какую-то другую альфу? :oops: может конечн в паре знаков напутал но вроде все верно $\ln(\cos(\alpha))\approx 0$

:D Аааа, вон в чём дело... Ну тогда ой.
Надо тогда записывать $1/0,00729746384339$
Здесь берётся обратное значение $\alpha$.

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 17:08 
Аватара пользователя
BoBuk в сообщении #296067 писал(а):
Надо тогда записывать $1/0,00729746384339$
Здесь берётся обратное значение $\alpha$.

$\ln\cos(1/0,00729746384339)\approx-1.00532$
Ну и что?
Вообще, какой смысл в этом подборе математических констант и операций, дающих приближение какого-либо числа?

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 17:25 
Аватара пользователя
Кстати, $\ln(\cos(x))\approx 0$ для любого $x\approx 0$, так что $\alpha$ тут вообще особого места не занимает. Повторюсь ещё раз, $\alpha$ -- физическая константа, отражающая особенности реального мира и выражать её через математические константы абсолютно бессмысленное занятие!

 
 
 
 Re: Alpha из математических констант
Сообщение09.03.2010, 17:31 
Типа раз безразмерная величина, значит должен в ней быть какой-то математический смысл

 
 
 
 Re: Alpha из математических констант
Сообщение11.03.2010, 03:45 
Аватара пользователя
Не понял, чего мое мнение не добавили,
вроде ни кого не хотел обидеть..
А что от сотового, так пока проблемы с провайдером,
скоро будет постоянный ИР денег хватит анлим.

 
 
 [ Сообщений: 72 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group