2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Группа автоморфизмов C_n
Сообщение23.12.2009, 07:47 


16/08/09
6
Задание: найти (с точностью до изоморфизма) группу $Aut(\mathbb C_n)$ -- группу автоморфизмов группы $\mathbb C_n=(X_n=\{e^{2\pi i k/n}\}_{k=0}^{n-1},\cdot)$.

Получилось доказать, что если $\varphi$ - автоморфизм группы $\mathbb C_n$, то это биективная перестановка, $\varphi(1)=1,\ \forall a\in X_n\ \varphi(\overline a)=\overline{\varphi(a)}$. И для четных $n$, что $\varphi(-1)=-1$.

Подскажите, пожалуйста, как двигаться дальше.

 Профиль  
                  
 
 Re: Группа автоморфизмов
Сообщение23.12.2009, 08:30 
Заслуженный участник


08/04/08
8562
Удобно доказать, что $C_n$ изоморфна группе $\mathbb{Z}/n\mathbb{Z}$ по умножению.

 Профиль  
                  
 
 Re: Группа автоморфизмов
Сообщение23.12.2009, 09:34 
Заслуженный участник


08/04/08
8562
Sonic86 писал(а):
Удобно доказать, что $C_n$ изоморфна группе $\mathbb{Z}/n\mathbb{Z}$ по умножению.

блин, не по умножению, а по сложению. А потом вспомните, что группа циклична и рассмотрите автоморфизм группы как цикличной группы.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group