Здравствуйте!
Проверьте, пожалуйста, решение задачи.
Двухмерный случайный вектор (X,Y) равномерно распределён внутри выделенной жирными линиями области В.

Двухмерная плотность вероятности
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaaaaa!3ADC!
\[
{f(x,y)}
\] $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaaaaa!3ADC!
\[
{f(x,y)}
\]](https://dxdy-01.korotkov.co.uk/f/c/4/3/c43c0575fc966ce742cd0ec5b4034ae182.png)
одинакова для любой точки этой области В.
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0Zaaiqaaqaabeqaaiaa
% dogacaGG7aWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaawIcacaGLPa
% aacqGHiiIZcaWGcbGaai4oaaqaaiaaicdacaGG7aGaamioeiaad2db
% caWGWqGaam4reiaadwdbaaGaay5Eaaaaaa!4B2F!
\[
f(x,y) = \left\{ \begin{array}{l}
c;\left( {x,y} \right) \in B; \\
0; \\
\end{array} \right.
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0Zaaiqaaqaabeqaaiaa
% dogacaGG7aWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaawIcacaGLPa
% aacqGHiiIZcaWGcbGaai4oaaqaaiaaicdacaGG7aGaamioeiaad2db
% caWGWqGaam4reiaadwdbaaGaay5Eaaaaaa!4B2F!
\[
f(x,y) = \left\{ \begin{array}{l}
c;\left( {x,y} \right) \in B; \\
0; \\
\end{array} \right.
\]
$](https://dxdy-04.korotkov.co.uk/f/7/a/5/7a54f10506ff82d8280c6c1a6a99349582.png)
. Вычислить коэффициент корреляции между величинами X и Y.
Решение.
Исходя из рисунка, получаем:
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0Zaaiqaaqaabeqaaiaa
% dogacaGG7aGaamyEaiabgsMiJkaadIhacqGHKjYOcaaI0aGaai4oai
% aaicdacqGHKjYOcaWG5bGaeyizImQaaGOmaiaacUdaaeaacaWGJbGa
% ai4oaiaaisdacqGH8aapcaWG4bGaeyizImQaaGOnaiaacUdacaaIWa
% GaeyizImQaamyEaiabgsMiJkaaigdacaGG7aaabaGaaGimaiaacUda
% caWG4qGaamypeiaadcdbcaWGhrGaamyneaaacaGL7baaaaa!5FA7!
\[
f(x,y) = \left\{ \begin{array}{l}
c;y \le x \le 4;0 \le y \le 2; \\
c;4 < x \le 6;0 \le y \le 1; \\
0; \\
\end{array} \right.
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0Zaaiqaaqaabeqaaiaa
% dogacaGG7aGaamyEaiabgsMiJkaadIhacqGHKjYOcaaI0aGaai4oai
% aaicdacqGHKjYOcaWG5bGaeyizImQaaGOmaiaacUdaaeaacaWGJbGa
% ai4oaiaaisdacqGH8aapcaWG4bGaeyizImQaaGOnaiaacUdacaaIWa
% GaeyizImQaamyEaiabgsMiJkaaigdacaGG7aaabaGaaGimaiaacUda
% caWG4qGaamypeiaadcdbcaWGhrGaamyneaaacaGL7baaaaa!5FA7!
\[
f(x,y) = \left\{ \begin{array}{l}
c;y \le x \le 4;0 \le y \le 2; \\
c;4 < x \le 6;0 \le y \le 1; \\
0; \\
\end{array} \right.
\]
$](https://dxdy-02.korotkov.co.uk/f/d/5/d/d5d2c77e22f7cb16c83590faffeffdd482.png)
Тогда
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWdXa
% qaamaapedabaGaamOzaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGa
% eyyXICTaamizaiaadIhacqGHflY1caWGKbGaamyEaaWcbaGaeyOeI0
% IaeyOhIukabaGaeyOhIukaniabgUIiYdaaleaacqGHsislcqGHEisP
% aeaacqGHEisPa0Gaey4kIipakiabg2da9maapifabaGaam4yaaWcba
% GaamOqaaqab0Gaey4kIiVaey4kIipakiabgwSixlaadsgacaWG4bGa
% amizaiaadMhacqGH9aqpcaWGJbWaa8qCaeaacaWGKbGaamyEaaWcba
% GaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehabaGaamizaiaadIha
% cqGHRaWkcaWGJbaaleaacaaI0aaabaGaaGOnaaqdcqGHRiI8aOWaa8
% qCaeaacaWGKbGaamyEaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipa
% kmaapehabaGaamizaiaadIhaaSqaaiaadMhaaeaacaaI0aaaniabgU
% IiYdGccqGH9aqpcaWGJbGaeyyXIC9aa8qCaeaacaaIYaGaamizaiaa
% dMhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccqGHRaWkcaWGJb
% Waa8qCaeaadaqadaqaaiaaisdacqGHsislcaWG5baacaGLOaGaayzk
% aaaaleaacaaIWaaabaGaaGOmaaqdcqGHRiI8aOGaamizaiaadMhacq
% GH9aqpcaaIYaGaam4yaiabgUcaRmaaeiaabaGaam4yaiabgwSixlaa
% isdacaWG5baacaGLiWoadaqhaaWcbaGaaGimaaqaaiaaikdaaaGccq
% GHsisldaWcaaqaaiaadogaaeaacaaIYaaaamaaeiaabaGaamyEamaa
% CaaaleqabaGaaGOmaaaaaOGaayjcSdWaa0baaSqaaiaaicdaaeaaca
% aIYaaaaOGaeyypa0dabaGaeyypa0JaaGOmaiaadogacqGHRaWkcaaI
% 0aGaam4yaiabgwSixlaaikdacqGHsisldaWcaaqaaiaadogaaeaaca
% aIYaaaaiabgwSixlaaisdacqGH9aqpcaaIYaGaam4yaiabgUcaRiaa
% iIdacaWGJbGaeyOeI0IaaGOmaiaadogacqGH9aqpcaaI4aGaam4yai
% aacUdaaaaa!BBAB!
\[
\begin{array}{l}
\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f(x,y) \cdot dx \cdot dy} } = \cdot dxdy = c\int\limits_0^1 {dy} \int\limits_4^6 {dx + c} \int\limits_0^2 {dy} \int\limits_y^4 {dx} = c \cdot \int\limits_0^1 {2dy} + c\int\limits_0^2 {\left( {4 - y} \right)} dy = 2c + \left. {c \cdot 4y} \right|_0^2 - \frac{c}{2}\left. {y^2 } \right|_0^2 = \\
= 2c + 4c \cdot 2 - \frac{c}{2} \cdot 4 = 2c + 8c - 2c = 8c; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWdXa
% qaamaapedabaGaamOzaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGa
% eyyXICTaamizaiaadIhacqGHflY1caWGKbGaamyEaaWcbaGaeyOeI0
% IaeyOhIukabaGaeyOhIukaniabgUIiYdaaleaacqGHsislcqGHEisP
% aeaacqGHEisPa0Gaey4kIipakiabg2da9maapifabaGaam4yaaWcba
% GaamOqaaqab0Gaey4kIiVaey4kIipakiabgwSixlaadsgacaWG4bGa
% amizaiaadMhacqGH9aqpcaWGJbWaa8qCaeaacaWGKbGaamyEaaWcba
% GaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehabaGaamizaiaadIha
% cqGHRaWkcaWGJbaaleaacaaI0aaabaGaaGOnaaqdcqGHRiI8aOWaa8
% qCaeaacaWGKbGaamyEaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipa
% kmaapehabaGaamizaiaadIhaaSqaaiaadMhaaeaacaaI0aaaniabgU
% IiYdGccqGH9aqpcaWGJbGaeyyXIC9aa8qCaeaacaaIYaGaamizaiaa
% dMhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccqGHRaWkcaWGJb
% Waa8qCaeaadaqadaqaaiaaisdacqGHsislcaWG5baacaGLOaGaayzk
% aaaaleaacaaIWaaabaGaaGOmaaqdcqGHRiI8aOGaamizaiaadMhacq
% GH9aqpcaaIYaGaam4yaiabgUcaRmaaeiaabaGaam4yaiabgwSixlaa
% isdacaWG5baacaGLiWoadaqhaaWcbaGaaGimaaqaaiaaikdaaaGccq
% GHsisldaWcaaqaaiaadogaaeaacaaIYaaaamaaeiaabaGaamyEamaa
% CaaaleqabaGaaGOmaaaaaOGaayjcSdWaa0baaSqaaiaaicdaaeaaca
% aIYaaaaOGaeyypa0dabaGaeyypa0JaaGOmaiaadogacqGHRaWkcaaI
% 0aGaam4yaiabgwSixlaaikdacqGHsisldaWcaaqaaiaadogaaeaaca
% aIYaaaaiabgwSixlaaisdacqGH9aqpcaaIYaGaam4yaiabgUcaRiaa
% iIdacaWGJbGaeyOeI0IaaGOmaiaadogacqGH9aqpcaaI4aGaam4yai
% aacUdaaaaa!BBAB!
\[
\begin{array}{l}
\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f(x,y) \cdot dx \cdot dy} } = \cdot dxdy = c\int\limits_0^1 {dy} \int\limits_4^6 {dx + c} \int\limits_0^2 {dy} \int\limits_y^4 {dx} = c \cdot \int\limits_0^1 {2dy} + c\int\limits_0^2 {\left( {4 - y} \right)} dy = 2c + \left. {c \cdot 4y} \right|_0^2 - \frac{c}{2}\left. {y^2 } \right|_0^2 = \\
= 2c + 4c \cdot 2 - \frac{c}{2} \cdot 4 = 2c + 8c - 2c = 8c; \\
\end{array}
\]
$](https://dxdy-02.korotkov.co.uk/f/d/0/4/d0449d600a280df17eee811aa263bdc282.png)
Значит
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaado
% gacqGH9aqpcaaIXaGaai4oaiabgkDiElaadogacqGH9aqpdaWcaaqa
% aiaaigdaaeaacaaI4aaaaiaacUdaaaa!40AE!
\[
8c = 1; \Rightarrow c = \frac{1}{8};
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaado
% gacqGH9aqpcaaIXaGaai4oaiabgkDiElaadogacqGH9aqpdaWcaaqa
% aiaaigdaaeaacaaI4aaaaiaacUdaaaa!40AE!
\[
8c = 1; \Rightarrow c = \frac{1}{8};
\]
$](https://dxdy-01.korotkov.co.uk/f/8/9/b/89b029cfc1b500f02466fd6cdf9891cd82.png)
Получаем
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0Zaaiqaaqaabeqaamaa
% laaabaGaaGymaaqaaiaaiIdaaaGaai4oaiaadMhacqGHKjYOcaWG4b
% GaeyizImQaaGinaiaacUdacaaIWaGaeyizImQaamyEaiabgsMiJkaa
% ikdacaGG7aaabaWaaSaaaeaacaaIXaaabaGaaGioaaaacaGG7aGaaG
% inaiabgYda8iaadIhacqGHKjYOcaaI2aGaai4oaiaaicdacqGHKjYO
% caWG5bGaeyizImQaaGymaiaacUdaaeaacaaIWaGaai4oaiaadIdbca
% WG9qGaamimeiaadEebcaWG1qaaaiaawUhaaaaa!60F1!
\[
f(x,y) = \left\{ \begin{array}{l}
\frac{1}{8};y \le x \le 4;0 \le y \le 2; \\
\frac{1}{8};4 < x \le 6;0 \le y \le 1; \\
0; \\
\end{array} \right.
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0Zaaiqaaqaabeqaamaa
% laaabaGaaGymaaqaaiaaiIdaaaGaai4oaiaadMhacqGHKjYOcaWG4b
% GaeyizImQaaGinaiaacUdacaaIWaGaeyizImQaamyEaiabgsMiJkaa
% ikdacaGG7aaabaWaaSaaaeaacaaIXaaabaGaaGioaaaacaGG7aGaaG
% inaiabgYda8iaadIhacqGHKjYOcaaI2aGaai4oaiaaicdacqGHKjYO
% caWG5bGaeyizImQaaGymaiaacUdaaeaacaaIWaGaai4oaiaadIdbca
% WG9qGaamimeiaadEebcaWG1qaaaiaawUhaaaaa!60F1!
\[
f(x,y) = \left\{ \begin{array}{l}
\frac{1}{8};y \le x \le 4;0 \le y \le 2; \\
\frac{1}{8};4 < x \le 6;0 \le y \le 1; \\
0; \\
\end{array} \right.
\]
$](https://dxdy-04.korotkov.co.uk/f/b/3/4/b340226cfbaeabe883e806d66770422e82.png)
Вычисляем значения математических ожиданий
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGTb
% WaaSbaaSqaaiaadIhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dIhacqGHflY1caWGMbGaaiikaiaadIhacaGGSaGaamyEaiaacMcacq
% GHflY1caWGKbGaamiEaiabgwSixlaadsgacaWG5baaleaacqGHsisl
% cqGHEisPaeaacqGHEisPa0Gaey4kIipaaSqaaiabgkHiTiabg6HiLc
% qaaiabg6HiLcqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaaIXaaabaGa
% aGioaaaadaWdsbqaaiaadIhaaSqaaiaadkeaaeqaniabgUIiYlabgU
% IiYdGccqGHflY1caWGKbGaamiEaiaadsgacaWG5bGaeyypa0ZaaSaa
% aeaacaaIXaaabaGaaGioaaaadaWdXbqaaiaadsgacaWG5baaleaaca
% aIWaaabaGaaGymaaqdcqGHRiI8aOWaa8qCaeaacaWG4bGaamizaiaa
% dIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI4aaaaaWcbaGaaGinaa
% qaaiaaiAdaa0Gaey4kIipakmaapehabaGaamizaiaadMhaaSqaaiaa
% icdaaeaacaaIYaaaniabgUIiYdGcdaWdXbqaaiaadIhacaWGKbGaam
% iEaaWcbaGaamyEaaqaaiaaisdaa0Gaey4kIipakiabg2da9maalaaa
% baGaaGymaaqaaiaaiIdaaaWaa8qCaeaadaqadaqaamaaeiaabaWaaS
% aaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaiaa
% wIa7amaaDaaaleaacaaIWaaabaGaaGOmaaaaaOGaayjkaiaawMcaai
% aadsgacaWG5baaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaey4k
% aSYaaSaaaeaacaaIXaaabaGaaGioaaaadaWdXbqaamaabmaabaWaaq
% GaaeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaI
% YaaaaaGaayjcSdWaa0baaSqaaiaadMhaaeaacaaI0aaaaaGccaGLOa
% GaayzkaaGaamizaiaadMhaaSqaaiaaicdaaeaacaaIYaaaniabgUIi
% YdGccqGH9aqpaeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI4aaaam
% aapehabaWaaeWaaeaadaWcaaqaaiaaiodacaaI2aGaeyOeI0IaaGym
% aiaaiAdaaeaacaaIYaaaaaGaayjkaiaawMcaaaWcbaGaaGimaaqaai
% aaigdaa0Gaey4kIipakiaadsgacaWG5bGaey4kaSYaaSaaaeaacaaI
% XaaabaGaaGioaaaadaWdXbqaamaabmaabaWaaSaaaeaacaaIXaGaaG
% OnaiabgkHiTiaadMhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaa
% aaGaayjkaiaawMcaaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipaki
% aadsgacaWG5bGaeyypa0ZaaSaaaeaacaaIYaGaaGinaaqaaiaaiIda
% aaGaeyypa0JaaG4maiaacUdaaaaa!C71F!
\[
\begin{array}{l}
m_x = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x \cdot f(x,y) \cdot dx \cdot dy} } = \frac{1}{8} \cdot dxdy = \frac{1}{8}\int\limits_0^1 {dy} \int\limits_4^6 {xdx + \frac{1}{8}} \int\limits_0^2 {dy} \int\limits_y^4 {xdx} = \frac{1}{8}\int\limits_0^1 {\left( {\left. {\frac{{x^2 }}{2}} \right|_0^2 } \right)dy} + \frac{1}{8}\int\limits_0^2 {\left( {\left. {\frac{{x^2 }}{2}} \right|_y^4 } \right)dy} = \\
= \frac{1}{8}\int\limits_0^1 {\left( {\frac{{36 - 16}}{2}} \right)} dy + \frac{1}{8}\int\limits_0^2 {\left( {\frac{{16 - y^2 }}{2}} \right)} dy = \frac{{24}}{8} = 3; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGTb
% WaaSbaaSqaaiaadIhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dIhacqGHflY1caWGMbGaaiikaiaadIhacaGGSaGaamyEaiaacMcacq
% GHflY1caWGKbGaamiEaiabgwSixlaadsgacaWG5baaleaacqGHsisl
% cqGHEisPaeaacqGHEisPa0Gaey4kIipaaSqaaiabgkHiTiabg6HiLc
% qaaiabg6HiLcqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaaIXaaabaGa
% aGioaaaadaWdsbqaaiaadIhaaSqaaiaadkeaaeqaniabgUIiYlabgU
% IiYdGccqGHflY1caWGKbGaamiEaiaadsgacaWG5bGaeyypa0ZaaSaa
% aeaacaaIXaaabaGaaGioaaaadaWdXbqaaiaadsgacaWG5baaleaaca
% aIWaaabaGaaGymaaqdcqGHRiI8aOWaa8qCaeaacaWG4bGaamizaiaa
% dIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI4aaaaaWcbaGaaGinaa
% qaaiaaiAdaa0Gaey4kIipakmaapehabaGaamizaiaadMhaaSqaaiaa
% icdaaeaacaaIYaaaniabgUIiYdGcdaWdXbqaaiaadIhacaWGKbGaam
% iEaaWcbaGaamyEaaqaaiaaisdaa0Gaey4kIipakiabg2da9maalaaa
% baGaaGymaaqaaiaaiIdaaaWaa8qCaeaadaqadaqaamaaeiaabaWaaS
% aaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaiaa
% wIa7amaaDaaaleaacaaIWaaabaGaaGOmaaaaaOGaayjkaiaawMcaai
% aadsgacaWG5baaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaey4k
% aSYaaSaaaeaacaaIXaaabaGaaGioaaaadaWdXbqaamaabmaabaWaaq
% GaaeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaI
% YaaaaaGaayjcSdWaa0baaSqaaiaadMhaaeaacaaI0aaaaaGccaGLOa
% GaayzkaaGaamizaiaadMhaaSqaaiaaicdaaeaacaaIYaaaniabgUIi
% YdGccqGH9aqpaeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI4aaaam
% aapehabaWaaeWaaeaadaWcaaqaaiaaiodacaaI2aGaeyOeI0IaaGym
% aiaaiAdaaeaacaaIYaaaaaGaayjkaiaawMcaaaWcbaGaaGimaaqaai
% aaigdaa0Gaey4kIipakiaadsgacaWG5bGaey4kaSYaaSaaaeaacaaI
% XaaabaGaaGioaaaadaWdXbqaamaabmaabaWaaSaaaeaacaaIXaGaaG
% OnaiabgkHiTiaadMhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaa
% aaGaayjkaiaawMcaaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipaki
% aadsgacaWG5bGaeyypa0ZaaSaaaeaacaaIYaGaaGinaaqaaiaaiIda
% aaGaeyypa0JaaG4maiaacUdaaaaa!C71F!
\[
\begin{array}{l}
m_x = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x \cdot f(x,y) \cdot dx \cdot dy} } = \frac{1}{8} \cdot dxdy = \frac{1}{8}\int\limits_0^1 {dy} \int\limits_4^6 {xdx + \frac{1}{8}} \int\limits_0^2 {dy} \int\limits_y^4 {xdx} = \frac{1}{8}\int\limits_0^1 {\left( {\left. {\frac{{x^2 }}{2}} \right|_0^2 } \right)dy} + \frac{1}{8}\int\limits_0^2 {\left( {\left. {\frac{{x^2 }}{2}} \right|_y^4 } \right)dy} = \\
= \frac{1}{8}\int\limits_0^1 {\left( {\frac{{36 - 16}}{2}} \right)} dy + \frac{1}{8}\int\limits_0^2 {\left( {\frac{{16 - y^2 }}{2}} \right)} dy = \frac{{24}}{8} = 3; \\
\end{array}
\]
$](https://dxdy-01.korotkov.co.uk/f/8/f/5/8f58d99f3637f3458681fc02868f2f0182.png)
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGTb
% WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dMhacqGHflY1caWGMbGaaiikaiaadIhacaGGSaGaamyEaiaacMcacq
% GHflY1caWGKbGaamiEaiabgwSixlaadsgacaWG5baaleaacqGHsisl
% cqGHEisPaeaacqGHEisPa0Gaey4kIipaaSqaaiabgkHiTiabg6HiLc
% qaaiabg6HiLcqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaaIXaaabaGa
% aGioaaaadaWdsbqaaiaadMhaaSqaaiaadkeaaeqaniabgUIiYlabgU
% IiYdGccqGHflY1caWGKbGaamiEaiaadsgacaWG5bGaeyypa0ZaaSaa
% aeaacaaIXaaabaGaaGioaaaadaWdXbqaaiaadMhacaWGKbGaamyEaa
% WcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehabaGaamizaiaa
% dIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI4aaaaaWcbaGaaGinaa
% qaaiaaiAdaa0Gaey4kIipakmaapehabaGaamyEaiaadsgacaWG5baa
% leaacaaIWaaabaGaaGOmaaqdcqGHRiI8aOWaa8qCaeaacaWGKbGaam
% iEaaWcbaGaamyEaaqaaiaaisdaa0Gaey4kIipakiabg2da9maalaaa
% baGaaGymaaqaaiaaiIdaaaWaa8qCaeaacaaIYaGaamyEaiaadsgaca
% WG4bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGioaaaaaSqaaiaaicda
% aeaacaaIXaaaniabgUIiYdGcdaWdXbqaaiaadMhadaqadaqaaiaais
% dacqGHsislcaWG5baacaGLOaGaayzkaaGaamizaiaadMhaaSqaaiaa
% icdaaeaacaaIYaaaniabgUIiYdGccqGH9aqpaeaacqGH9aqpdaWcaa
% qaaiaaiodacaaI1aaabaGaaGOmaiaaisdaaaGaeyisISRaaGymaiaa
% c6cacaaI0aGaaGOnaiaacUdaaaaa!A4C1!
\[
\begin{array}{l}
m_y = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {y \cdot f(x,y) \cdot dx \cdot dy} } = \frac{1}{8} \cdot dxdy = \frac{1}{8}\int\limits_0^1 {ydy} \int\limits_4^6 {dx + \frac{1}{8}} \int\limits_0^2 {ydy} \int\limits_y^4 {dx} = \frac{1}{8}\int\limits_0^1 {2ydx + \frac{1}{8}} \int\limits_0^2 {y\left( {4 - y} \right)dy} = \\
= \frac{{35}}{{24}} \approx 1.46; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGTb
% WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dMhacqGHflY1caWGMbGaaiikaiaadIhacaGGSaGaamyEaiaacMcacq
% GHflY1caWGKbGaamiEaiabgwSixlaadsgacaWG5baaleaacqGHsisl
% cqGHEisPaeaacqGHEisPa0Gaey4kIipaaSqaaiabgkHiTiabg6HiLc
% qaaiabg6HiLcqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaaIXaaabaGa
% aGioaaaadaWdsbqaaiaadMhaaSqaaiaadkeaaeqaniabgUIiYlabgU
% IiYdGccqGHflY1caWGKbGaamiEaiaadsgacaWG5bGaeyypa0ZaaSaa
% aeaacaaIXaaabaGaaGioaaaadaWdXbqaaiaadMhacaWGKbGaamyEaa
% WcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehabaGaamizaiaa
% dIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI4aaaaaWcbaGaaGinaa
% qaaiaaiAdaa0Gaey4kIipakmaapehabaGaamyEaiaadsgacaWG5baa
% leaacaaIWaaabaGaaGOmaaqdcqGHRiI8aOWaa8qCaeaacaWGKbGaam
% iEaaWcbaGaamyEaaqaaiaaisdaa0Gaey4kIipakiabg2da9maalaaa
% baGaaGymaaqaaiaaiIdaaaWaa8qCaeaacaaIYaGaamyEaiaadsgaca
% WG4bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGioaaaaaSqaaiaaicda
% aeaacaaIXaaaniabgUIiYdGcdaWdXbqaaiaadMhadaqadaqaaiaais
% dacqGHsislcaWG5baacaGLOaGaayzkaaGaamizaiaadMhaaSqaaiaa
% icdaaeaacaaIYaaaniabgUIiYdGccqGH9aqpaeaacqGH9aqpdaWcaa
% qaaiaaiodacaaI1aaabaGaaGOmaiaaisdaaaGaeyisISRaaGymaiaa
% c6cacaaI0aGaaGOnaiaacUdaaaaa!A4C1!
\[
\begin{array}{l}
m_y = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {y \cdot f(x,y) \cdot dx \cdot dy} } = \frac{1}{8} \cdot dxdy = \frac{1}{8}\int\limits_0^1 {ydy} \int\limits_4^6 {dx + \frac{1}{8}} \int\limits_0^2 {ydy} \int\limits_y^4 {dx} = \frac{1}{8}\int\limits_0^1 {2ydx + \frac{1}{8}} \int\limits_0^2 {y\left( {4 - y} \right)dy} = \\
= \frac{{35}}{{24}} \approx 1.46; \\
\end{array}
\]
$](https://dxdy-04.korotkov.co.uk/f/f/e/a/fea0a1477b212949afdb2863baec1ef082.png)
Далее, вычисляем дисперсии
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGeb
% WaaSbaaSqaaiaadIhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dIhadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGMbGaaiikaiaadI
% hacaGGSaGaamyEaiaacMcacqGHflY1caWGKbGaamiEaiabgwSixlaa
% dsgacaWG5baaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIi
% paaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaeyOe
% I0IaamyBamaaBaaaleaacaWG4baabeaakmaaCaaaleqabaGaaGOmaa
% aakiabg2da9maalaaabaGaaGymaaqaaiaaiIdaaaWaa8qCaeaacaWG
% KbGaamyEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehaba
% GaamiEamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaey4kaSYa
% aSaaaeaacaaIXaaabaGaaGioaaaaaSqaaiaaisdaaeaacaaI2aaani
% abgUIiYdGcdaWdXbqaaiaadsgacaWG5baaleaacaaIWaaabaGaaGOm
% aaqdcqGHRiI8aOWaa8qCaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaO
% GaamizaiaadIhaaSqaaiaadMhaaeaacaaI0aaaniabgUIiYdGccqGH
% sisldaqadaqaaiaaiodaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik
% daaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI4aaaamaapehabaWa
% aeWaaeaadaabcaqaamaalaaabaGaamiEamaaCaaaleqabaGaaG4maa
% aaaOqaaiaaiodaaaaacaGLiWoadaqhaaWcbaGaaGinaaqaaiaaiAda
% aaaakiaawIcacaGLPaaacaWGKbGaamyEaaWcbaGaaGimaaqaaiaaig
% daa0Gaey4kIipakiabgUcaRmaalaaabaGaaGymaaqaaiaaiIdaaaWa
% a8qCaeaadaqadaqaamaaeiaabaWaaSaaaeaacaWG4bWaaWbaaSqabe
% aacaaIZaaaaaGcbaGaaG4maaaaaiaawIa7amaaDaaaleaacaWG5baa
% baGaaGinaaaaaOGaayjkaiaawMcaaiaadsgacaWG5bGaeyOeI0Yaae
% WaaeaacaaIZaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqa
% aiaaicdaaeaacaaIYaaaniabgUIiYdGccqGH9aqpaeaacqGH9aqpca
% aIXaGaaGymaiaac6cacaaI1aGaeyOeI0IaaGyoaiabg2da9iaaikda
% caGGUaGaaGynaiaacUdaaaaa!ADBB!
\[
\begin{array}{l}
D_x = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x^2 \cdot f(x,y) \cdot dx \cdot dy} } - m_x ^2 = \frac{1}{8}\int\limits_0^1 {dy} \int\limits_4^6 {x^2 dx + \frac{1}{8}} \int\limits_0^2 {dy} \int\limits_y^4 {x^2 dx} - \left( 3 \right)^2 = \frac{1}{8}\int\limits_0^1 {\left( {\left. {\frac{{x^3 }}{3}} \right|_4^6 } \right)dy} + \frac{1}{8}\int\limits_0^2 {\left( {\left. {\frac{{x^3 }}{3}} \right|_y^4 } \right)dy - \left( 3 \right)^2 } = \\
= 11.5 - 9 = 2.5; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGeb
% WaaSbaaSqaaiaadIhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dIhadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGMbGaaiikaiaadI
% hacaGGSaGaamyEaiaacMcacqGHflY1caWGKbGaamiEaiabgwSixlaa
% dsgacaWG5baaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIi
% paaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaeyOe
% I0IaamyBamaaBaaaleaacaWG4baabeaakmaaCaaaleqabaGaaGOmaa
% aakiabg2da9maalaaabaGaaGymaaqaaiaaiIdaaaWaa8qCaeaacaWG
% KbGaamyEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehaba
% GaamiEamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaey4kaSYa
% aSaaaeaacaaIXaaabaGaaGioaaaaaSqaaiaaisdaaeaacaaI2aaani
% abgUIiYdGcdaWdXbqaaiaadsgacaWG5baaleaacaaIWaaabaGaaGOm
% aaqdcqGHRiI8aOWaa8qCaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaO
% GaamizaiaadIhaaSqaaiaadMhaaeaacaaI0aaaniabgUIiYdGccqGH
% sisldaqadaqaaiaaiodaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik
% daaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI4aaaamaapehabaWa
% aeWaaeaadaabcaqaamaalaaabaGaamiEamaaCaaaleqabaGaaG4maa
% aaaOqaaiaaiodaaaaacaGLiWoadaqhaaWcbaGaaGinaaqaaiaaiAda
% aaaakiaawIcacaGLPaaacaWGKbGaamyEaaWcbaGaaGimaaqaaiaaig
% daa0Gaey4kIipakiabgUcaRmaalaaabaGaaGymaaqaaiaaiIdaaaWa
% a8qCaeaadaqadaqaamaaeiaabaWaaSaaaeaacaWG4bWaaWbaaSqabe
% aacaaIZaaaaaGcbaGaaG4maaaaaiaawIa7amaaDaaaleaacaWG5baa
% baGaaGinaaaaaOGaayjkaiaawMcaaiaadsgacaWG5bGaeyOeI0Yaae
% WaaeaacaaIZaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqa
% aiaaicdaaeaacaaIYaaaniabgUIiYdGccqGH9aqpaeaacqGH9aqpca
% aIXaGaaGymaiaac6cacaaI1aGaeyOeI0IaaGyoaiabg2da9iaaikda
% caGGUaGaaGynaiaacUdaaaaa!ADBB!
\[
\begin{array}{l}
D_x = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x^2 \cdot f(x,y) \cdot dx \cdot dy} } - m_x ^2 = \frac{1}{8}\int\limits_0^1 {dy} \int\limits_4^6 {x^2 dx + \frac{1}{8}} \int\limits_0^2 {dy} \int\limits_y^4 {x^2 dx} - \left( 3 \right)^2 = \frac{1}{8}\int\limits_0^1 {\left( {\left. {\frac{{x^3 }}{3}} \right|_4^6 } \right)dy} + \frac{1}{8}\int\limits_0^2 {\left( {\left. {\frac{{x^3 }}{3}} \right|_y^4 } \right)dy - \left( 3 \right)^2 } = \\
= 11.5 - 9 = 2.5; \\
\end{array}
\]
$](https://dxdy-04.korotkov.co.uk/f/f/1/f/f1ffb376ebdeb3373768be1fbdc9f54a82.png)
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGeb
% WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dMhadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGMbGaaiikaiaadI
% hacaGGSaGaamyEaiaacMcacqGHflY1caWGKbGaamiEaiabgwSixlaa
% dsgacaWG5baaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIi
% paaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaeyOe
% I0IaamyBamaaBaaaleaacaWG5baabeaakmaaCaaaleqabaGaaGOmaa
% aakiabg2da9maalaaabaGaaGymaaqaaiaaiIdaaaWaa8qCaeaacaWG
% 5bWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadMhaaSqaaiaaicdaae
% aacaaIXaaaniabgUIiYdGcdaWdXbqaaiaadsgacaWG4bGaey4kaSYa
% aSaaaeaacaaIXaaabaGaaGioaaaaaSqaaiaaisdaaeaacaaI2aaani
% abgUIiYdGcdaWdXbqaaiaadMhadaahaaWcbeqaaiaaikdaaaGccaWG
% KbGaamyEaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipakmaapehaba
% GaamizaiaadIhaaSqaaiaadMhaaeaacaaI0aaaniabgUIiYdGccqGH
% sisldaqadaqaaiaaigdacaGGUaGaaGinaiaaiAdaaiaawIcacaGLPa
% aadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaa
% caaI4aaaamaapehabaGaaGOmaiaadMhadaahaaWcbeqaaiaaikdaaa
% GccaWGKbGaamyEaiabgUcaRmaalaaabaGaaGymaaqaaiaaiIdaaaaa
% leaacaaIWaaabaGaaGymaaqdcqGHRiI8aOWaa8qCaeaacaWG5bWaaW
% baaSqabeaacaaIYaaaaOWaaeWaaeaacaaI0aGaeyOeI0IaamyEaaGa
% ayjkaiaawMcaaiaadsgacaWG5baaleaacaaIWaaabaGaaGOmaaqdcq
% GHRiI8aOGaeyOeI0IaaGOmaiaac6cacaaIXaGaaG4maiabg2da9aqa
% aiabg2da9maalaaabaGaaGymaiaaigdaaeaacaaIXaGaaGOmaaaacq
% GHijYUcaaIWaGaaiOlaiaaiMdacaaIXaGaai4oaaaaaa!A8EC!
\[
\begin{array}{l}
D_y = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {y^2 \cdot f(x,y) \cdot dx \cdot dy} } - m_y ^2 = \frac{1}{8}\int\limits_0^1 {y^2 dy} \int\limits_4^6 {dx + \frac{1}{8}} \int\limits_0^2 {y^2 dy} \int\limits_y^4 {dx} - \left( {1.46} \right)^2 = \frac{1}{8}\int\limits_0^1 {2y^2 dy + \frac{1}{8}} \int\limits_0^2 {y^2 \left( {4 - y} \right)dy} - 2.13 = \\
= \frac{{11}}{{12}} \approx 0.91; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGeb
% WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0Zaa8qmaeaadaWdXaqaaiaa
% dMhadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGMbGaaiikaiaadI
% hacaGGSaGaamyEaiaacMcacqGHflY1caWGKbGaamiEaiabgwSixlaa
% dsgacaWG5baaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIi
% paaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaeyOe
% I0IaamyBamaaBaaaleaacaWG5baabeaakmaaCaaaleqabaGaaGOmaa
% aakiabg2da9maalaaabaGaaGymaaqaaiaaiIdaaaWaa8qCaeaacaWG
% 5bWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadMhaaSqaaiaaicdaae
% aacaaIXaaaniabgUIiYdGcdaWdXbqaaiaadsgacaWG4bGaey4kaSYa
% aSaaaeaacaaIXaaabaGaaGioaaaaaSqaaiaaisdaaeaacaaI2aaani
% abgUIiYdGcdaWdXbqaaiaadMhadaahaaWcbeqaaiaaikdaaaGccaWG
% KbGaamyEaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipakmaapehaba
% GaamizaiaadIhaaSqaaiaadMhaaeaacaaI0aaaniabgUIiYdGccqGH
% sisldaqadaqaaiaaigdacaGGUaGaaGinaiaaiAdaaiaawIcacaGLPa
% aadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaa
% caaI4aaaamaapehabaGaaGOmaiaadMhadaahaaWcbeqaaiaaikdaaa
% GccaWGKbGaamyEaiabgUcaRmaalaaabaGaaGymaaqaaiaaiIdaaaaa
% leaacaaIWaaabaGaaGymaaqdcqGHRiI8aOWaa8qCaeaacaWG5bWaaW
% baaSqabeaacaaIYaaaaOWaaeWaaeaacaaI0aGaeyOeI0IaamyEaaGa
% ayjkaiaawMcaaiaadsgacaWG5baaleaacaaIWaaabaGaaGOmaaqdcq
% GHRiI8aOGaeyOeI0IaaGOmaiaac6cacaaIXaGaaG4maiabg2da9aqa
% aiabg2da9maalaaabaGaaGymaiaaigdaaeaacaaIXaGaaGOmaaaacq
% GHijYUcaaIWaGaaiOlaiaaiMdacaaIXaGaai4oaaaaaa!A8EC!
\[
\begin{array}{l}
D_y = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {y^2 \cdot f(x,y) \cdot dx \cdot dy} } - m_y ^2 = \frac{1}{8}\int\limits_0^1 {y^2 dy} \int\limits_4^6 {dx + \frac{1}{8}} \int\limits_0^2 {y^2 dy} \int\limits_y^4 {dx} - \left( {1.46} \right)^2 = \frac{1}{8}\int\limits_0^1 {2y^2 dy + \frac{1}{8}} \int\limits_0^2 {y^2 \left( {4 - y} \right)dy} - 2.13 = \\
= \frac{{11}}{{12}} \approx 0.91; \\
\end{array}
\]
$](https://dxdy-04.korotkov.co.uk/f/b/2/a/b2aa12450d719a2235854f4f715f7c2182.png)
Вычисляем значения среднеквадратичных отклонений величин X и Y:
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
% baaSqaaiaadIhaaeqaaOGaeyypa0ZaaOaaaeaacaWGebWaaSbaaSqa
% aiaadIhaaeqaaaqabaGccqGH9aqpdaGcaaqaaiaaikdacaGGUaGaaG
% ynaaWcbeaakiabgIKi7kaaigdacaGGUaGaaGynaiaaiIdacaGG7aaa
% aa!44AB!
\[
\sigma _x = \sqrt {D_x } = \sqrt {2.5} \approx 1.58;
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
% baaSqaaiaadIhaaeqaaOGaeyypa0ZaaOaaaeaacaWGebWaaSbaaSqa
% aiaadIhaaeqaaaqabaGccqGH9aqpdaGcaaqaaiaaikdacaGGUaGaaG
% ynaaWcbeaakiabgIKi7kaaigdacaGGUaGaaGynaiaaiIdacaGG7aaa
% aa!44AB!
\[
\sigma _x = \sqrt {D_x } = \sqrt {2.5} \approx 1.58;
\]
$](https://dxdy-01.korotkov.co.uk/f/0/7/c/07cfa9443c2a0bb85f86afdea51b3bd282.png)
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
% baaSqaaiaadMhaaeqaaOGaeyypa0ZaaOaaaeaacaWGebWaaSbaaSqa
% aiaadMhaaeqaaaqabaGccqGH9aqpdaGcaaqaaiaaicdacaGGUaGaaG
% yoaiaaigdaaSqabaGccqGHijYUcaaIWaGaaiOlaiaaiMdacaaI1aGa
% ai4oaaaa!456A!
\[
\sigma _y = \sqrt {D_y } = \sqrt {0.91} \approx 0.95;
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
% baaSqaaiaadMhaaeqaaOGaeyypa0ZaaOaaaeaacaWGebWaaSbaaSqa
% aiaadMhaaeqaaaqabaGccqGH9aqpdaGcaaqaaiaaicdacaGGUaGaaG
% yoaiaaigdaaSqabaGccqGHijYUcaaIWaGaaiOlaiaaiMdacaaI1aGa
% ai4oaaaa!456A!
\[
\sigma _y = \sqrt {D_y } = \sqrt {0.91} \approx 0.95;
\]
$](https://dxdy-04.korotkov.co.uk/f/b/5/3/b5355216f8cd1849e8b8a8ed60dc49c482.png)
Корреляционный момент
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGlb
% WaaSbaaSqaaiaadIhacaWG5baabeaakiabg2da9maapedabaWaa8qm
% aeaacaWG4bGaeyyXICTaamyEaiabgwSixlaadAgacaGGOaGaamiEai
% aacYcacaWG5bGaaiykaiabgwSixlaadsgacaWG4bGaeyyXICTaamiz
% aiaadMhaaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aa
% WcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGccqGHsisl
% daqadaqaaiaad2gadaWgaaWcbaGaamiEaaqabaGccqGHflY1caWGTb
% WaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaa
% aeaacaaIXaaabaGaaGioaaaadaWdXbqaaiaadMhacaWGKbGaamyEaa
% WcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehabaGaamiEaiaa
% dsgacaWG4bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGioaaaaaSqaai
% aaisdaaeaacaaI2aaaniabgUIiYdGcdaWdXbqaaiaadMhacaWGKbGa
% amyEaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipakmaapehabaGaam
% iEaiaadsgacaWG4baaleaacaWG5baabaGaaGinaaqdcqGHRiI8aOGa
% eyOeI0IaaGinaiaac6cacaaIZaGaaGioaiabg2da9maalaaabaGaaG
% ymaaqaaiaaiIdaaaWaa8qCaeaadaqadaqaamaaeiaabaWaaSaaaeaa
% caWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaiaawIa7am
% aaDaaaleaacaaI0aaabaGaaGOnaaaaaOGaayjkaiaawMcaaiaadMha
% caWGKbGaamyEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabgU
% caRmaalaaabaGaaGymaaqaaiaaiIdaaaWaa8qCaeaadaqadaqaamaa
% eiaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG
% OmaaaaaiaawIa7amaaDaaaleaacaWG5baabaGaaGinaaaaaOGaayjk
% aiaawMcaaiaadMhacaWGKbGaamyEaaWcbaGaaGimaaqaaiaaikdaa0
% Gaey4kIipakiabgkHiTiaaisdacaGGUaGaaG4maiaaiIdacqGH9aqp
% aeaacqGH9aqpcqGHsislcaaIYaGaaiOlaiaaicdacaaIWaGaaGynai
% aacUdaaaaa!B46D!
\[
\begin{array}{l}
K_{xy} = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x \cdot y \cdot f(x,y) \cdot dx \cdot dy} } - \left( {m_x \cdot m_x } \right) = \frac{1}{8}\int\limits_0^1 {ydy} \int\limits_4^6 {xdx + \frac{1}{8}} \int\limits_0^2 {ydy} \int\limits_y^4 {xdx} - 4.38 = \frac{1}{8}\int\limits_0^1 {\left( {\left. {\frac{{x^2 }}{2}} \right|_4^6 } \right)ydy} + \frac{1}{8}\int\limits_0^2 {\left( {\left. {\frac{{x^2 }}{2}} \right|_y^4 } \right)ydy} - 4.38 = \\
= - 2.005; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGlb
% WaaSbaaSqaaiaadIhacaWG5baabeaakiabg2da9maapedabaWaa8qm
% aeaacaWG4bGaeyyXICTaamyEaiabgwSixlaadAgacaGGOaGaamiEai
% aacYcacaWG5bGaaiykaiabgwSixlaadsgacaWG4bGaeyyXICTaamiz
% aiaadMhaaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aa
% WcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGccqGHsisl
% daqadaqaaiaad2gadaWgaaWcbaGaamiEaaqabaGccqGHflY1caWGTb
% WaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaa
% aeaacaaIXaaabaGaaGioaaaadaWdXbqaaiaadMhacaWGKbGaamyEaa
% WcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaapehabaGaamiEaiaa
% dsgacaWG4bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGioaaaaaSqaai
% aaisdaaeaacaaI2aaaniabgUIiYdGcdaWdXbqaaiaadMhacaWGKbGa
% amyEaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipakmaapehabaGaam
% iEaiaadsgacaWG4baaleaacaWG5baabaGaaGinaaqdcqGHRiI8aOGa
% eyOeI0IaaGinaiaac6cacaaIZaGaaGioaiabg2da9maalaaabaGaaG
% ymaaqaaiaaiIdaaaWaa8qCaeaadaqadaqaamaaeiaabaWaaSaaaeaa
% caWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaiaawIa7am
% aaDaaaleaacaaI0aaabaGaaGOnaaaaaOGaayjkaiaawMcaaiaadMha
% caWGKbGaamyEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabgU
% caRmaalaaabaGaaGymaaqaaiaaiIdaaaWaa8qCaeaadaqadaqaamaa
% eiaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG
% OmaaaaaiaawIa7amaaDaaaleaacaWG5baabaGaaGinaaaaaOGaayjk
% aiaawMcaaiaadMhacaWGKbGaamyEaaWcbaGaaGimaaqaaiaaikdaa0
% Gaey4kIipakiabgkHiTiaaisdacaGGUaGaaG4maiaaiIdacqGH9aqp
% aeaacqGH9aqpcqGHsislcaaIYaGaaiOlaiaaicdacaaIWaGaaGynai
% aacUdaaaaa!B46D!
\[
\begin{array}{l}
K_{xy} = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x \cdot y \cdot f(x,y) \cdot dx \cdot dy} } - \left( {m_x \cdot m_x } \right) = \frac{1}{8}\int\limits_0^1 {ydy} \int\limits_4^6 {xdx + \frac{1}{8}} \int\limits_0^2 {ydy} \int\limits_y^4 {xdx} - 4.38 = \frac{1}{8}\int\limits_0^1 {\left( {\left. {\frac{{x^2 }}{2}} \right|_4^6 } \right)ydy} + \frac{1}{8}\int\limits_0^2 {\left( {\left. {\frac{{x^2 }}{2}} \right|_y^4 } \right)ydy} - 4.38 = \\
= - 2.005; \\
\end{array}
\]
$](https://dxdy-01.korotkov.co.uk/f/c/a/c/cacd3f945cea3085a86ad85c3f572eea82.png)
Коэффициент корреляции
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS
% baaSqaaiaadIhacaWG5baabeaakiabg2da9maalaaabaGaam4samaa
% BaaaleaacaWG4bGaamyEaaqabaaakeaacqaHdpWCdaWgaaWcbaGaam
% yEaaqabaGccqaHdpWCdaWgaaWcbaGaamiEaaqabaaaaOGaeyypa0Za
% aSaaaeaacqGHsislcaaIYaGaaiOlaiaaicdacaaIWaGaaGynaaqaai
% aaigdacaGGUaGaaGynaiaaiIdacqGHflY1caaIWaGaaiOlaiaaiMda
% caaI1aaaaiabg2da9iabgkHiTiaaigdacaGGUaGaaG4maiaaiodaca
% GG7aaaaa!5745!
\[
\rho _{xy} = \frac{{K_{xy} }}{{\sigma _y \sigma _x }} = \frac{{ - 2.005}}{{1.58 \cdot 0.95}} = - 1.33;
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS
% baaSqaaiaadIhacaWG5baabeaakiabg2da9maalaaabaGaam4samaa
% BaaaleaacaWG4bGaamyEaaqabaaakeaacqaHdpWCdaWgaaWcbaGaam
% yEaaqabaGccqaHdpWCdaWgaaWcbaGaamiEaaqabaaaaOGaeyypa0Za
% aSaaaeaacqGHsislcaaIYaGaaiOlaiaaicdacaaIWaGaaGynaaqaai
% aaigdacaGGUaGaaGynaiaaiIdacqGHflY1caaIWaGaaiOlaiaaiMda
% caaI1aaaaiabg2da9iabgkHiTiaaigdacaGGUaGaaG4maiaaiodaca
% GG7aaaaa!5745!
\[
\rho _{xy} = \frac{{K_{xy} }}{{\sigma _y \sigma _x }} = \frac{{ - 2.005}}{{1.58 \cdot 0.95}} = - 1.33;
\]
$](https://dxdy-03.korotkov.co.uk/f/e/8/a/e8a6465dedb9506da389019df97d482f82.png)