Здравствуйте.
Дана система векторов:
 
 И вектор сдвига:

Надо задать СЛУ-ний подпространство:

и линейное многообразие:

.
Насколько я знаю, надо составить из векторов матрицу, расположив их в столбцах, и справа приписать неизвестные коэффициенты. 

|

, где 

.
Затем, упростить матрицу методом Гаусса, и справа получаццо уравнения, фундаментальная система решений которой и будет являться базисом в пространстве 

. У меня получилось так:

Получилось 2 уравнения - 2я и 4я строки. якобы, они и являются той системой, решение которой задает пространство, "эквивалентное" W
Собственно, вопрос состоит в том, каким образом это все можно теоретически обосновать  

 и еще, как задать линейное многообразие. Знаю только, что это многообразие можно задать, как и подпространство, 2мя способами: как лин. оболочку, или как фундаментальную систему решений системы линейных уравнений Ax=b, где  

. В данном примере надо в виде СЛУ.
плиз хелп