Спасибо большое за ответ, вот еще.
Задача: Из партии, содержащей 12 деталей, среди которых 7 высшего сорта, для контроля последовательно выбирают наугад 5 изделий. Найти вероятность того, среди выбранных изделий откажется ровно 2 высшего сорта.
а) без возвращения
б) с возвращением
Решение: Число всевозможных комбинаций:

Из выбранных 5 деталей должно быть:
2 - высший сорт (из 7)
3 - обычные (из (12-7=5))
2 детали высшего сорта из 7 можно выбрать

способами
3 детали обычных из 5 можно выбрать

способами
Тогда
