2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Существует ли формула для определения кол-ва простых чисел?
Сообщение21.08.2009, 14:44 


20/07/07
834
Чего вы мучаетесь? Есть простая формула:

$$\pi(N)=\sum_{j=2}^{N-1} \prod_{k=2}^j \lim_{w\to\infty}(1-\cos^{2w}\left(\frac{j\pi}{k}\right))$$

 Профиль  
                  
 
 Re: Существует ли формула для определения кол-ва простых чисел?
Сообщение21.08.2009, 19:35 
Заслуженный участник


27/04/09
28128
Действительно проще некуда :roll:

 Профиль  
                  
 
 Re: Существует ли формула для определения кол-ва простых чисел?
Сообщение17.11.2009, 14:49 


11/10/08
171
Redmond WA, USA
Rasulka в сообщении #235461 писал(а):
Много раз уже встречал формулы, по которым можно лишь приближенно оценить количество простых чисел от 1 до N. У меня возник вопрос, существует ли формула для нахождения точного количества простых чисел от 1 до N, пусть даже эта формула будет бесконечной?


Есть полиномиальная формула (правда, дающая не количество простых чисел, а сами простые числа), полученная в 1976 году Джонсом, Сато, Вада и Вьенсом. Здесь их публикация в Amer. Math. Mon. с достаточно полным выводом. Сама формула есть в википедии.
Цитата:
Множество положительных значений многочлена
$$(k+2) (1 - [wz + h + j - q]^2 - [(gk + 2g + k + 1)(h + j) + h - z]^2 - [2n + p + q + z - e]^2 - $$$$
[16(k + 1)^3(k + 2)(n + 1)^2 + 1 - f^2]^2 - [e^3(e + 2)(a + 1)^2 + 1 - o^2]^2 - [(a^2 - 1)y^2 + 1 - x^2]^2 - $$$$
[16r^2y^4(a^2 - 1) + 1 - u^2]^2 - [((a + u^2(u^2 - a))^2 - 1)(n + 4dy)^2 + 1 - (x + cu)^2]^2 - [n + l + v - y]^2 - $$$$
[(a^2 - 1)l^2 + 1 - m^2]^2 - [ai + k + 1 - l - i]^2 - [p + l(a - n - 1) + b(2an + 2a - n^2 - 2n - 2) - m]^2 - $$$$
[q + y(a - p - 1) + s(2ap + 2a - p^2 - 2p - 2) - x]^2 - [z + pl(a - p) + t(2ap - p^2 - 1) - pm]^2) $$
в точности совпадает с множеством простых чисел, если встречающиеся в нем переменные являются неотрицательными целыми числами.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group