2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5 ... 21  След.
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение09.08.2009, 14:28 
Заблокирован


16/06/09

1547
victor_sorokin
Кстати, нашел вот такую интересную форму:
$29^5+2\cdot4^5=47\cdot241\cdot1811$,
которая вся состоит из простых множителей вида $10k+1$ за исключением множителя $47$. И теоретически может претендовать на равенство форме $a^5+b^5$.
При условии, что $a+b=47$.
Поэтому, боюсь одних лишь знаний о множителях полиномов для доказательства неравенства:
$x^n+2y^n\neq z^n+y^n$
может оказаться недостаточно.

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение09.08.2009, 15:27 
Заблокирован


01/08/09

194
victor_sorokin в сообщении #233633 писал(а):
Простое число $m=kn+1$ содержится (сомножителем) в следующих числах:

1. $E=c^n-a^n-b^n$,
2. $D=c^{nm}-a^{nm}-b^{nm}$,
3. $U=c^{n+1}-a^{n+1}-b^{n+1}$,
4. $G=c^{kn}-a^{kn}-b^{kn}+1$,
5. $F=c^{knn}-a^{knn}-b^{knn}+1$.


К ним прибавляется еще одно, важное, число:

6. $H=c^{n+m}-a^{n+m}-b^{n+m}$!

-- Вс авг 09, 2009 20:13:18 --

temp03 в сообщении #233942 писал(а):
Поэтому, боюсь одних лишь знаний о множителях полиномов для доказательства неравенства:
$x^n+2y^n\neq z^n+y^n$
может оказаться недостаточно.


Не исключено. Поэтому идем дальше: может быть, удастся показать, что каждый делитель $m$ в левой части не является делителем $z+y$?

Или иначе: показать, что в равенстве Ферма число $c+b$ (или хотя бы одно из чисел $c+b, c+a, a-b$) не содержит делителей вида $m$. (Для доказательства ВТФ этого было бы достаточно.)

***

А вот еще одна «бредовая» идея.

В равенстве Ферма

$a^n-b^n=(a-b)R$.

И в то же время

$a^n-b^n=(c-b)P-(c-a)Q=[(c-b)-(c-a)]X=(a-b)X$.

Очевидно, $R=X$.

При $P=Q$ выражение 2° вполне корректно, но в этом случае равенство Ферма невозможно.

А если $P\neq Q$?

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение10.08.2009, 14:16 
Заблокирован


16/06/09

1547
victor_sorokin в сообщении #233947 писал(а):
Не исключено. Поэтому идем дальше: может быть, удастся показать, что каждый делитель $m$ в левой части не является делителем $z+y$?

Или иначе: показать, что в равенстве Ферма число $c+b$ (или хотя бы одно из чисел $c+b, c+a, a-b$) не содержит делителей вида $m$. (Для доказательства ВТФ этого было бы достаточно.)

Вполне очевидно, что структура формы $a^n+2b^n$ сложнее, чем у формы $c^n+b^n$, т.к. может содержать больше различных классов простых множителей. Поэтому надо принимать именно форму $c^n+b^n$, состоящую из простых множителей вида $2kn+1$ и $c+b$. И уже для нее подбирать некоторую форму $a^n+2b^n$ такую, что все ее множители также будут иметь вид $2kn+1$ и несколько множителей - $c+b$.
Что касается чисел $c+b, c+a, a-b$ - на них ограничений нет вообще, они могут иметь любые делители/множители.

victor_sorokin в сообщении #233947 писал(а):
$a^n-b^n=(c-b)P-(c-a)Q=[(c-b)-(c-a)]X=(a-b)X$.

Очевидно, $R=X$.

$a^n-b^n=(c-b)P-(c-a)Q$ можно представить как $xP-yQ$. Где $x-y=a-b$. Тогда
$xP-yQ=(a-b)X$.
$7\cdot8-5\cdot6=(19-17)13$
Очевидно, что в данном случае числа $P=8$ и $Q=6$ не имеют никакого отношения к числу $X=13$.

-- Пн авг 10, 2009 15:57:13 --

Но кажется! (еще не уверен) форма $x^n\pm2y^n$ не может делиться на $n^2$. Проверял на компьютере для $n=3, 5, 7$.
При $x, y<20000$ решений нет.

-- Пн авг 10, 2009 16:37:49 --

И это похоже, действительно так. В действительности форма $(x^n+2y^n)\div n^2$ тогда и только тогда, когда $(2^{n-1}-1)\div n^2$. (Утверждение достаточно, но не необходимо).
При $n=3, 5, 7$ утверждение очевидно. Насколько мне известно, оно должно быть справедливо и для всех остальных простых $n$. Чего доказать к сожалению пока не могу. Может кто-то сможет.

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение10.08.2009, 20:18 
Заслуженный участник
Аватара пользователя


18/12/07
762
temp03 в сообщении #234069 писал(а):
И это похоже, действительно так. В действительности форма $(x^n+2y^n)\div n^2$ тогда и только тогда, когда $(2^{n-1}-1)\div n^2$.
При $n=3, 5, 7$ утверждение очевидно. Насколько мне известно, оно должно быть справедливо и для всех остальных простых $n$. Чего доказать к сожалению пока не могу. Может кто-то сможет.

Насколько мне известно, это не может быть тебе известно, ибо
$(2^{1093-1}-1)$ делится на $1093^2$ - первое простое с таким свойством. Найдены и другие.
До кучи, чтобы не ляпал что ни попадя про другие основания.
$(3^{11-1}-1)$ делится на $11^2$

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение10.08.2009, 21:26 
Заблокирован


01/08/09

194
temp03 в сообщении #234069 писал(а):
Вполне очевидно, что структура формы $a^n+2b^n$ сложнее, чем у формы $c^n+b^n$, т.к. может содержать больше различных классов простых множителей.

Спасибо за проделанную работу – на первое время Ваших сообщений достаточно (это направление исследования малоперспективно).

Сейчас меня заинтриговала теорема, являющаяся (или должная быть таковой) в теории полиномов фундаментальной:

Теорема.

Для взаимнопростых и не кратных простому $n$ натуральных чисел $a, b, c, d$ ($a-b$ тоже не кратно $n$) числа
$\frac{a^n-b^n}{a-b}$ и $\frac{c^n-d^n}{c-d}$ являются взимнопростыми. Напомню, все (за исключением, может быть единственого n) простые делители обоих чисел имеют вид $m=kn+1$ (этот факт может пригодиться при доказательстве теоремы с помощью малой теоремы Ферма).

(Можно также сузить теорему требованием: число $c^n-d^n$ делится на $a^n-b^n$)

Меня интересуют два вопроса:
1) существует ли (известна ли) эта теорема?
2) если нет, то какова (интуитивно) степень трудности ее доказательства?

С уважением,

В.С.

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение11.08.2009, 16:28 
Заблокирован


01/08/09

194
Великая теорема Ферма.
Классическое доказательство в кратком изложении

Доказательство основано на следующей правдоподобной гипотетической теореме :

Теорема

Для взаимнопростых и не кратных простому $n$ натуральных чисел $a, b, c, d$ (одно из чисел $a-b$ и $c-d$ также не кратно $n$)
Числа $\frac{a^n-b^n}{a-b}$ и $\frac{d^n-c^n}{d-c}$ являются взимнопростыми.
(Мощность теоремы можно ослабить требованием: число $c^n-d^n$ делится на $a^n-b^n$.)

Если Теорема верна, то существует простое элементарное доказательство ВТФ.

Обозначения чисел, участвующих в доказательстве, становятся понятными из следующих соотношений (после устранения общих множителей в числах $A, B, C$):
1°) $A^n+B^n=C^n$,
2°) $A^n=C^n-B^n=(C-B)P=a^np^n$,
3°) $B^n=C^n-A^n=(C-A)Q=b^nq^n$,
4°) $c^n-b^n=(c-b)T$,
5°) $q^n-p^n=(q-p)R$.

Доказательство ВТФ

Случай 1: числа $a, b$ и $a-b$ не кратны $n$.

Если числа $P$ и $Q$ расписать по известным формулам разложения, то становится очевидным, что число $Q-P$ содержит сомножитель $a-b$ (а кроме того еще и сомножитель числа $C$, что лишь усиливает доказательство).

Как легко видеть из формул 1°–5°, числа $a, b, P, Q$ являются взаимнопростыми, а потому согласно Теореме, числа $T$ и $R$ из 4°–5° являются взаимнопропростыми.

Следовательно, все сомножители числа $T$ входят сомножителями в число $q-p$.

НО, как нетрудно вычислить –даже грубо приближенно:
6°) $T>>q-p$! И справдливость ВТФ налицо.

Два других случая доказывают совершенно аналогично.

Человеку с точным количественным глазомером верность неравенства 6° представляется очевидной.

Однако до аналитического доказательства неравенства 6° можно убедиться в его верности простыми расчетами на компьютере для частного случая:

$n=3$,
$A=125, A^3=1 953 125$,
$B=64, B^3=262 144$,
$C=130,353, C^n=2 215 269$,

$C-B=66,353, a=4,048375$,
$P=\frac{A^3}{C-B}=29 435,4, p=30,875$,

$C-A=5,353, b=1,7493$,
$Q=\frac{B^3}{C-A}=48971, q=36,584$,
$a-b=2,29901, T=\frac{A-B}{a-b}=\frac{61}{2,29901}=26,533$,

$Q-P=19536, q-p=5,7096$. Но 5,7096 на 26,533 НЕ делится! Что противоречит Теореме.

Итак, теперь дело стоит только за Теоремой. Не исключено, что она уже давно доказана, и потому пока подождем мнения специалистов…

-- Вт авг 11, 2009 15:57:11 --

P.S. Я нашел отличный инструмент для простого доказательства Теоремы. Может, сработает...

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение11.08.2009, 17:14 


22/02/09

285
Свердловская обл.
victor_sorokin в сообщении #234356 писал(а):
Случай 1: числа$c$ и$a-b$ не кратны$n$ .

Это второй случай Ф. и он самый легкий и он доказан.Лично мною найдено такое решение:если $xyz$ не делятся на$n$,то $2^{n-1}-1$ должно делиться на $n^2$.Существуют и другие решения,ссылку дать не могу,просто не помню-прошло более 30 лет и тогда не было компьютеров.

-- Вт авг 11, 2009 18:42:46 --

victor_sorokin в сообщении #234356 писал(а):
°)$q^n-p^n=(q-p)R$ .

и так же $q^n-p^n=(a-b)c_1R_1$,где: $c=c_1c_2$.А вот что такое $q$ и $p$ ?.Например для $n=3$ $q^3=c^2+ca+a^2$ и $q=$?

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение11.08.2009, 21:53 
Заблокирован


01/08/09

194
Гаджимурат в сообщении #234368 писал(а):
victor_sorokin в сообщении #234356 писал(а):
Случай 1: числа $c$ и $a-b$ не кратны$n$.

Это второй случай Ф. и он самый легкий и он доказан.

- К сожалению, я зеркально оговорился. Правильно: числа $a, b$ и $a-b$ не кратны $n$ (свой текст уже поправил). В моем доказательстве участвует та пара (из трех) чисел, в которой оба не кратны $n$, а третье может быть любым, при условии, что его противопара не кратна $n$. Так что я доказываю сразу оба случая.

Гаджимурат писал(а):
Лично мною найдено такое решение: если $xyz$ не делятся на $n$, то $2^{n-1}-1$ должно делиться на $n^2$.

- Очень интересно! Если не затруднит, расскажите подробней.

Гаджимурат писал(а):
Существуют и другие решения, ссылку дать не могу, просто не помню – прошло более 30 лет и тогда не было компьютеров.

- Да, компьютер – большая подмога.

Гаджимурат писал(а):
-- Вт авг 11, 2009 18:42:46 --
victor_sorokin в сообщении #234356 писал(а):
°)$q^n-p^n=(q-p)R$.

и так же $q^n-p^n=(a-b)c_1R_1$, где: $c=c_1c_2$.

- Да, конечно, но я от $n$ избавился, чтобы не мешалось под ногами.

Гаджимурат писал(а):
А вот что такое $q$ и $p$? Например для $n=3$ $q^3=c^2+ca+a^2$ и $q=$?

- Это корни $n$-й степени из $P$ и $Q$, являющихся (в равенстве Ферма) $n$-ми степенями.

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение12.08.2009, 00:17 
Заслуженный участник
Аватара пользователя


18/12/07
762
victor_sorokin в сообщении #234356 писал(а):
Доказательство основано на следующей правдоподобной гипотетической теореме :

Теорема

Для взаимнопростых и не кратных простому $n$ натуральных чисел $a, b, c, d$ (одно из чисел $a-b$ и $c-d$ также не кратно $n$)
Числа $\frac{a^n-b^n}{a-b}$ и $\frac{d^n-c^n}{d-c}$ являются взимнопростыми.

Чушь беспросветная.
Контропримеры
$4^5-3^5=781=11*71$
$8^5-7^5=15961=11*1451$
Можно нащёлкать таких примеров для любого простого.
Чтобы измышлять теоремы, надо обладать знаниями по этому предмету. Хотя бы начальными. Знание MathType не есть знание математики.

-- Ср авг 12, 2009 00:44:25 --

Гаджимурат в сообщении #234368 писал(а):
Это второй случай Ф. и он самый легкий и он доказан.Лично мною найдено такое решение:если $xyz$ не делятся на$n$,то $2^{n-1}-1$ должно делиться на $n^2$.Существуют и другие решения,ссылку дать не могу,просто не помню-прошло более 30 лет и тогда не было компьютеров.

Ещё в до войны было доказано, что первый случай БТФ справедлив для всех n для которых $m^{n-1}-1$ не делится на $n^2$, а m любое число меньше 44/Взято из "Боревич, шаферевич. Теория чисел"./

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение12.08.2009, 08:22 
Заблокирован


01/08/09

194
Коровьев в сообщении #234462 писал(а):
victor_sorokin в сообщении #234356 писал(а):
Доказательство основано на следующей правдоподобной гипотетической теореме :

Теорема

Для взаимнопростых и не кратных простому $n$ натуральных чисел $a, b, c, d$ (одно из чисел $a-b$ и $c-d$ также не кратно $n$)
Числа $\frac{a^n-b^n}{a-b}$ и $\frac{d^n-c^n}{d-c}$ являются взимнопростыми.

Чушь беспросветная.
Контропримеры
$4^5-3^5=781=11*71$
$8^5-7^5=15961=11*1451$
Можно нащёлкать таких примеров для любого простого.
Чтобы измышлять теоремы, надо обладать знаниями по этому предмету. Хотя бы начальными. Знание MathType не есть знание математики.


Осталось доказать, что числа 4 и 8 являются взаимнопростыми.
А в остальном я с Вами согласен.

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение12.08.2009, 10:18 
Заблокирован


16/06/09

1547
victor_sorokin
$13^5-7^5=11\cdot32226$
$13$ и $4$ являются взаимнопростыми.

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение12.08.2009, 13:54 
Заблокирован


01/08/09

194
temp03 в сообщении #234509 писал(а):
victor_sorokin
$13^5-7^5=11\cdot32226$
$13$ и $4$ являются взаимнопростыми.


Премного благодарен!
Следовательно, теорему нужно ослабить дополнительными условиями:
Среди четырех взаимнопростых чисел $a, b, c, d$ в каждой паре есть хотя бы по одному вида $m=kn+1$.

Еще раз спасибо за помощь!

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение12.08.2009, 15:56 
Заслуженный участник


31/12/05
1517
Продолжаем балаган :)

$\frac{17^5-6^5}{17-6}=128371=31\cdot4141$
$\frac{13^5-11^5}{13-11}=105121=31\cdot3391$

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение12.08.2009, 16:45 
Заблокирован
Аватара пользователя


17/06/09

2213
victor_sorokin
Я думаю, можно даже придумать, где все четыре $a, b, c, d$ будут простыми вида $2kn+1$. :D
$\dfrac{41^5+71^5}{41+71}=11\cdot1558511$
$\dfrac{61^5+31^5}{61+31}=11\cdot862871$

 Профиль  
                  
 
 Re: Великая теорема Ферма. Классическое доказательство
Сообщение13.08.2009, 08:53 
Заблокирован


01/08/09

194
age в сообщении #234595 писал(а):
victor_sorokin
$\dfrac{41^5+71^5}{41+71}=11\cdot1558511$
$\dfrac{61^5+31^5}{61+31}=11\cdot862871$

Красивое опровержение гипотетической теоремы. Спасибо!

Хорошо бы теперь опровергнуть первоначальное предположение: что

число $U=c^{n+1}-a^{n+1}-b^{n+1}$ не содержит простого множителя $m=2kn+1$, не принадлежащего числу $abc$.

С уважением,

Виктор Сорокин

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 314 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 21  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group