Anatolii писал(а):
Не существует простых решений для теоремы Ферма. Только составные, иначе бы существовали простые числа вида а^p+b^p и вообще я не ограничиваю заданное уравнение никакими условиями, а только полагаю, что они равны кубу, составному или простому-без разницы.
Руст не говорил о простых решениях, он говорил о взаимно простых решениях. И он совершенно прав.
Anatolii писал(а):
И не надо мне приписывать молчаливых предположений, покажите мне противоречие в моём рассуждении, точное и неопровержимое.
Вам никто не приписывает молчаливых предположений, Вам указывают на пробел в рассуждении. Если
![$x$ $x$](https://dxdy-04.korotkov.co.uk/f/3/3/2/332cc365a4987aacce0ead01b8bdcc0b82.png)
,
![$y$ $y$](https://dxdy-02.korotkov.co.uk/f/d/e/c/deceeaf6940a8c7a5a02373728002b0f82.png)
,
![$z$ $z$](https://dxdy-04.korotkov.co.uk/f/f/9/3/f93ce33e511096ed626b4719d50f17d282.png)
- попарно взаимно простые натуральные числа, удовлетворяющие уравнению
![$x^3+y^3=z^3$ $x^3+y^3=z^3$](https://dxdy-03.korotkov.co.uk/f/a/7/8/a7894bcb34304fa5dde145d2a56776db82.png)
, то числа
![$x+y$ $x+y$](https://dxdy-01.korotkov.co.uk/f/c/3/3/c33c2451eaad7165c4b6eeadf16db85382.png)
и
![$\frac{x^3+y^3}{x+y}=x^2-xy+y^2=(x+y)^2-3xy$ $\frac{x^3+y^3}{x+y}=x^2-xy+y^2=(x+y)^2-3xy$](https://dxdy-04.korotkov.co.uk/f/f/e/c/fec7462764490803b7dab7d7b5054bfe82.png)
будут кубами натуральных чисел только в том случае, когда число
![$z$ $z$](https://dxdy-04.korotkov.co.uk/f/f/9/3/f93ce33e511096ed626b4719d50f17d282.png)
не делится на
![$3$ $3$](https://dxdy-02.korotkov.co.uk/f/5/d/c/5dc642f297e291cfdde8982599601d7e82.png)
. Если же число
![$z$ $z$](https://dxdy-04.korotkov.co.uk/f/f/9/3/f93ce33e511096ed626b4719d50f17d282.png)
делится на
![$3$ $3$](https://dxdy-02.korotkov.co.uk/f/5/d/c/5dc642f297e291cfdde8982599601d7e82.png)
, то
![$x+y=9v_1^3$ $x+y=9v_1^3$](https://dxdy-03.korotkov.co.uk/f/2/e/0/2e045a0388db23834d43a6200119f84582.png)
и
![$\frac{x^3+y^3}{x+y}=3h_1^3$ $\frac{x^3+y^3}{x+y}=3h_1^3$](https://dxdy-02.korotkov.co.uk/f/9/9/6/9966f60269dd5fa73b3efa762644460782.png)
, где
![$v_1$ $v_1$](https://dxdy-01.korotkov.co.uk/f/4/1/9/41922e474070adc90e7c1379c28d22fe82.png)
и
![$h_1$ $h_1$](https://dxdy-02.korotkov.co.uk/f/5/a/9/5a95dbebd5e79e850a576db54f501ab882.png)
- некоторые натуральные числа. Это очень давно известно (примерно лет двести). Аналогичная ситуация имеет место и в тех случаях, когда на
![$3$ $3$](https://dxdy-02.korotkov.co.uk/f/5/d/c/5dc642f297e291cfdde8982599601d7e82.png)
делится не
![$z$ $z$](https://dxdy-04.korotkov.co.uk/f/f/9/3/f93ce33e511096ed626b4719d50f17d282.png)
, а
![$x$ $x$](https://dxdy-04.korotkov.co.uk/f/3/3/2/332cc365a4987aacce0ead01b8bdcc0b82.png)
или
![$y$ $y$](https://dxdy-02.korotkov.co.uk/f/d/e/c/deceeaf6940a8c7a5a02373728002b0f82.png)
.
Anatolii писал(а):
Решите моё уравнение в шестой степени, для пяти чисел, хотя бы
с помощью Уайлса или другого авторитета увешанного наградами!
А это зачем?
Anatolii писал(а):
Самое удивительное, что если я соглашусь, что я не прав, а на самом деле буду прав, то Вас это устроит, тоесть Вы не ищете истину, вы ее создаёте для других, выдумываете отсебячину...
Самое удивительное, что если
Руст согласится, что Вы правы, а на самом деле Вы не правы, то Вас это устроит, то есть, Вы не ищете истину...