в каком-то смысле карандаш с бумагой и ластиком - тоже вычислительное средство
Цитата:
При решении землемерных и астрономических задач возникла потребность в решении треугольников и других геометрических вопросов. Родилась идея, что задачи эти можно решать в уменьшенном масштабе — «на бумаге» — в виде графических построений, а далее — с помощью механических устройств, в которых длины и углы поворота отдельных деталей соответствуют реальным расстояниям и углам, непосредственно получаемым при измерениях изучаемых объектов. Так появились первые астрономические инструменты, с помощью которых, помимо непосредственного измерения углов, модельным путем — с использованием принципа геометрического подобия — определялись неизвестные линейные размеры объектов. Подобные же принципы использовались для определения расстояний на земле.
Одним из первых специально сконструированных дальномеров — он служил для определения расстояний до артиллерийских целей — был прибор, построенный в начале XIX в. русским офицером Тимофеем Бринком11. В дальнейшем принцип геометрического подобия стал применяться для выполнения простых математических операций (сложение, вычитание, умножение) и их комбинаций; математические величины вводились в приборы в соответствующем масштабе в виде углов, перемещений, длин и иных чисто механических носителей.
Проблемой, затруднявшей использование подобных устройств, являлась трудность достижения необходимых точностей чисто механическими средствами. Поэтому интенсивное их развитие, главным образом для решения военных задач (военные приборы), началось лишь в XX в., когда прогресс технологии позволил создавать достаточно прецизионную технику.
Для интегрирования и дифференцирования стали применяться специальные дисковые или грибовидные фрикционные механизмы и тахометры, а для введения функциональных величин — механические графики, кулачки и коноиды. На механических принципах были созданы довольно сложные приборы для управления артиллерийской зенитной стрельбой (ПУАЗО), управления торпедной стрельбой и стрельбой корабельной артиллерии (ПУТС и ПУС). Важной особенностью такого рода счетно-решающих приборов было то, что они работали в «реальном масштабе времени», т.е. результаты получались непрерывно, без задержки, при непрерывном же вводе исходных данных. Теорией и проектированием механических счетно-решающих устройств интенсивно занимались многие советские ученые, и в том числе Н.Г. Бруевич, С.О. Доброгурский, И.Ф. Сакриер, Н.И. Пчельников.
Развитие электротехники и электроники привело к введению в описываемые приборы электрических и электронных элементов (потенциометрические схемы, решающие усилители, вращающиеся трансформаторы), а затем к появлению счетно-решающих устройств, полностью построенных на такого рода элементах; эти устройства начали интенсивно разрабатываться в 40-е годы и в значительной степени стимулировали развитие аналоговых моделирующих устройств.
Все это воздействовало на развитие инженерной мысли в области точного приборостроения. Помимо вопросов точности механизмов, которыми занимались такие ученые, как Н.Г. Бруевич и 3.Ш. Блох, возник ряд специальных инженерных дисциплин, связанных с отдельными аспектами теории и методики проектирования систем и устройств, решающих определенные группы математических задач. Кроме упомянутых выше ученых, исследования в этой области в СССР вели Б.И. Станиславский, А.А. Папернов, А.Л. Лившиц, Л.Н. Преснухин, В.С. Семенихин и др., а также многие зарубежные специалисты (в их числе были Н. Винер, Л. Заде, Д. Рагаззини и др.).
Развитие цифровых, дискретных устройств типа арифмометров, сначала на основе механических принципов, а затем электромеханических и электронных, привело к включению цифровых элементов в счетно-решающие приборы, а затем и к созданию цифровых счетно-решающих устройств — специализированных ЦВМ,— работавших в натуральном масштабе времени.
Существенным является то, что развитие счетно-решающей техники обусловило переход от управления отдельными объектами (станок, орудие, батарея и т.п.) к управлению их комплексами, т.е. выдвинуло задачу управления техническими системами сложной природы. Иначе говоря, возникли подходы кибернетического плана. Примечательно, что работы Н. Винера в области теории ПУАЗО и счетно-решающих приборов помогли ему сформулировать ряд идей, которые вошли в его первую книгу о кибернетике.
P.S. Наверно надо напрягать этим вопросом народ на математических форумах. В том числе и ангельско-язычных.