В книжке Сергея Маркова "Большая книга искусственного интеллекта" нашел следующее:
Цитата:
Использование термина «тензорные процессоры» нередко вызывает нехилый баттхёрт у математиков, которые знают, что понятие тензора не эквивалентно понятию многомерного массива. Конечно, если вы не математик, то довольно удобно считать, что единичное число — это скаляр, одномерный массив — вектор, двумерный — матрица, а произвольный n-мерный массив — это тензор. Но всё-таки тензоры и многомерные массивы (они же многомерные таблицы) — это разные типы объектов. Тензор — это особый тип функции, а многомерный массив — структура данных, подходящая для представления тензора в системе координат, в таком случае отдельное число в таблице называют компонентом тензора. Математики обычно определяют тензор как полилинейную функцию, то есть функцию нескольких векторных переменных, которая линейна по каждому из аргументов. Тензор линейно преобразует элементы одного линейного пространства в элементы другого, что бы это ни значило. Частными случаями тензоров являются скаляры, векторы, билинейные формы и так далее. Число измерений таблицы, представляющей тензор, называют его валентностью или рангом тензора. Это была минутка полезных математических знаний.
«„Тензоры“ в TensorFlow не имеют ничего общего с тензорами! — пишет рассерженный пользователь Locken Lui в комментарии к посту на платформе Medium. — Это злоупотребление использованием термина тензор. „Тензоры“ в смысле, используемом в TensorFlow, являются просто многомерными матрицами и не имеют ничего (!) общего с реальными тензорами в физике, континуальных теориях или теориях поля. Вы смешиваете эти понятия в своём посте. Возможно, название „Tensor“ было выбрано потому, что оно звучит проще, чем “MultidimensionalMatrixFlow” »[1561]. Мы понимаем вашу боль, Locken Lui, и разделяем её.