Ну и кроме того Вы неправильно подставили числа в формулу, мат.ожидание для 19-252 равно 1 не на 67#, а в 2.6 раза дальше (нашёл по HL1 подбором верхнего предела интегрирования). Так что надо считать так:
(здесь
). Т.е. тыкнув 67# раз в случайные числа в 67# мы с вероятностью 32% обнаружим не менее одного раза 19-252 (может и разные если их там больше одной).
А вот если тыкать не в случные числа в полном 67#, а только лишь в допустимые 293e15, то оценка сложнее: надо знать сколько допустимых вариантов до мат.ожидания равного 1, т.е. до 2.6*67#, но это точно подсчитать сложно, проще оценить примерно в
предположении что допустимые варианты распределены в 71# равномерно, тогда берём 52/2.6 часть от всех вариантов в 71# и это и будет M в формуле, оно получается в 1.9 раза больше 293e15 и соответственно
. Превышение над 32% можно считать свидетельством некорректности предположения о равномерности, а можно что тыкать только в допустимые варианты выгоднее. А может верно и то и другое, я не уверен.
В принципе 41% скорее всего Ваши же 40% с точностью до погрешности аргументов. Но это по любому вероятность при
случайном тыканьи много-много раз. Мы делаем совершенно не так.
-- 11.11.2024, 16:45 --И ключевой вопрос именно в том, можно ли применять аналогию с кубиком.
По моему нельзя: случайные броски совершенно не то же самое что тотальный перебор. Потому и вероятности разные.
-- 11.11.2024, 16:56 --YadryaraЕсли хотите через бросание кубика, то пространство событий надо совершенно другим: кидаем кубик с 293e15 (точнее в 1.9...2.6 раза большим) гранями, проверяем соответствующее число и запоминаем результат проверки, уничтожаем эту грань кубика чтобы она гарантированно больше никогда не выпадала и вероятности всех прочих граней увеличились для сохранения суммы вероятностей всех граней равной 1, кидаем снова. И так 293e15 раз. Смотрим на результаты проверок, была ли найдена хотя бы одна 190-252.
И разумеется тут вероятность уже не будет столь простой формулой. Какой - не знаю, думать надо, возможно что-то про сумму геометрической прогрессии.
Вот такая аналогия будет равна поиску кортежей. Тут правда не учтён порядок проверки, ну так и мы уже проверяем не подряд.
Отличие в удалении выпавших граней, и это принципиально всё меняет.
Другая более простая аналогия - выемка шаров из урны (293e15 раз вынимаем по одному шару из урны с 293e15 (или в 1.9...2.6 раза больше) шарами и в конце проверяем что вынули хотя бы один нужного цвета), это вообще классическая задача теорвера, для неё и точное решение известно. Если шаров больше, то кажется для корректности надо шары больше 67# не учитывать (не уменьшать количество оставшихся попыток) и возвращать обратно в урну (это принципиально).
Если искать до первого правильного шара, а не ровно 293e15 раз, то это
другая столь же стандартная задача теорвера.
-- 11.11.2024, 17:18 --Что-то я опять подозреваю, что никто не будет помогать, хотя математиков на форуме полным-полно. Ну может начнут вопросы задавать: А вы определили вероятностное пространство? А какое у вас распределение? Докажите сначала то и это...
Согласен. Но таки попробую, хоть развлечёмся.