2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 квантовомеханическая брахистохрона
Сообщение05.11.2024, 20:23 
Аватара пользователя


08/10/09
962
Херсон
Прошу помочь сформулировать некий квантовомеханический аналог задачи о брахистохроне. Возможно, необходимо будет использовать формализм интеграла Фейнмана по траекториям.
Что приходит в голову: имеется частица в однородном потенциальном поле. Решения соответствующего уравнения Шредингера: суть функции Эйри. Далее: попробовать рассмотреть что-то типа квазиклассического приближения...

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение05.11.2024, 21:00 


21/12/16
908
что такое идеальная связь в квантмеханической системе -- вот это основной вопрос

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение05.11.2024, 21:11 
Аватара пользователя


08/10/09
962
Херсон
тут немного другой акцент: минимизировать среднее квантовомеханическое значение времени перехода... среди фиксированной начальной волновой функции и всех возможных конечных целевых состояний

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение07.11.2024, 18:54 


29/01/09
684
reterty в сообщении #1660741 писал(а):
минимизировать среднее квантовомеханическое значение времени перехода

а ак определяется среднее время перехода в КМ? Не подскажите? Не оно конечно так - в первой же статьн\е по КМ ейный отец воспользовался вариационным исчислением и решил записал таки свое таки знаменитое уравнение в стационарной форме.. Но и все. Уравнение то реарого порядка по времени - как записать вариационную задачу для уранений первого порядка вопрос нетривильный.... Да и сама постановка заставляет задумать об адекватности - волновые функции не наблюдаемы - как их фиксировать на границах? а чо сфащовым множителем делать?

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение08.11.2024, 00:28 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
pppppppo_98 в сообщении #1660900 писал(а):
Уравнение то реарого порядка по времени
В метрике Хэмминга расстояние от подчёркнутого слова до слов "первого" и "второго" (наиболее вероятных кандидатов) одинаково и равно трём. В такой ситуации нам, биокиберам устаревших моделей, особенно тяжело, так как наш мозг, не будучи в состоянии распознать слово, испытывает большие перегрузки и может даже сломаться. Прошу Вас, проверяйте написанное перед отправкой.

(Оффтоп)

pppppppo_98 в сообщении #1660900 писал(а):
а ак ... статьн\е ... реарого ... уранений ... нетривильный ... чо сфащовым ...
:facepalm: :cry:

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение08.11.2024, 03:28 


07/10/24

21
svv в сообщении #1660919 писал(а):
В метрике Хэмминга
расстояние от подчёркнутого слова до слов "первого" и "второго" (наиболее вероятных кандидатов) одинаково и равно трём.

Хотя из других соображений, первое будет поближе :-) Есть ер - метатеза к ре

-- 08.11.2024, 03:37 --

(Оффтоп)

Если поглядеть на раскладку, то логика движения пальцев такая - вместо вверх вниз-направо (пер) почти зеркалка реа, и далее тоже почти зеркалим, начиная не с в, а р

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение08.11.2024, 06:28 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Как по мне, комментарий pppppppo_98 вполне адекватен обсуждаемому вопросу.

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение08.11.2024, 08:01 
Заслуженный участник
Аватара пользователя


31/01/14
11347
Hogtown
pppppppo_98 в сообщении #1660900 писал(а):
Уравнение то первого порядка по времени - как записать вариационную задачу для уравнений первого порядка вопрос нетривиальный..
Для Шредингера известно как функционал записать
$$\int \Bigl(\operatorname{Im}  \bar{\psi}\psi_t  -|\nabla \psi|^2 -V(x) |\psi|^2 \Bigr)\,dxdc $$
(тут фокус в том, что волновая функция комплексная)

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение08.11.2024, 18:17 


29/01/09
684
B
Red_Herring в сообщении #1660927 писал(а):
Для Шредингера известно как функционал записать

ну записали (я еще в первом сообщении вспомнил об ууравнении Дирака и его действии)... А чем смысл?

Если брать изначальную статью Шредингера ему не было известно пространственное распределение в.ф. и он решал вариационную задачу минимизации функционала $\int dx\, \psi^\dagger(\Delta +V(x))\psi\rightarrow \textrm{extremum}$.

А что здесь? раскладываем в.ф. по ортононормальному базису cобственных функций гамильтониана $(-\frac{\hbar^2}{2m}\Delta +V(x))\psi_i(x)=\omega_i \psi_i(x)$ (лениво писать суммы поэтому буду далее пользоваться конвенцией эйнштейна об индексах). $\psi_i(x)=\a_i(t) \psi_i(x)$ . Тогда ваше выражение запишется интегрирования с учетом условия ортонормированности $\langle\psi_i|\psi_j\rangle = \int dx\, \bar{\psi}_i(x)\psi_j(x) = \delta_{ij}$
$$ S[\psi(x,t)]=\int dt\,\left\{\frac{1}{2 i}\left(-\bar{a}_i(t)\dot{a}_i(t)+\dot{\bar{a}}_i(t) a_i(t)\right)-\omega_i\bar{a_i(t)}a_i(t)\right\}$$. Это квадратичная форма , результат ее вариьирования тривиален ...Получаем уравнения что то типа $\dot{a}=-i\omega_i a;\, \dot{\bar{a}}=i\omega_i \bar{a}$. В чем правда брат? (с)

Это только пол проблемы, вторая полупроблема более существенно с физической точки зрения. Топикстатрер предлагает зафиксировать начальное и конечное состояние процесса. Отлично, отлично... Итак записываем граничные условия $\psi(x,t_0)=\psi_0(x); \psi(x,t_1)=\psi_1(x)$ А теперь вспоминаем что волновая функция ненаблюдаема , описывает с точность до фазы - своей фазы на каждом из концов, то есть вышеназванная пара граничных условий и вот такая пара граничных условий $\psi(x,t_0)=\psi_0(x); \psi(x,t_1)=e^{i\lambda}\psi_1(x)$, якобы должны описать переход одинаковые переходы из одного состояния в другое при любом $\lambda$. Сразу видно что это будут разные решения...

Так шо продолжаем поиск смысла... Это к тому шо стартертопик таки не описал как определить ансамбль усреднения для расчета времени

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение08.11.2024, 18:52 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
pppppppo_98 в сообщении #1660966 писал(а):
стартертопик таки не описал как определить ансамбль усреднения для расчета времени
И не опишут. Оне желают, чтобы им тут "интересненькую задачку" поставили, решили и объяснили так, чтобы им понятно стало. Так что — трудитесь, Солнце ещё высоко.

 Профиль  
                  
 
 Re: квантовомеханическая брахистохрона
Сообщение08.11.2024, 20:32 


21/12/16
908
Думаю, что все дело в наложении дополнительных идеальных в каком-то смысле связей. Иначе не надо назвать это задачей о брахистохроне. В конечномерных системах это делается просто -- я тут как-то ветку открывал про брахистохрону, там можно посмотреть. Как обобщать данный формализм на бесконечномерный случай непонятно. И это интересный вопрос. Безотносительно к квантовой механике.

-- 08.11.2024, 21:49 --

Впрочем нет, не так уж непонятно. Главное иметь лагранжиан

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 11 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Enceladoglu


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group