2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 38, 39, 40, 41, 42, 43, 44 ... 84  След.
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 18:44 
Аватара пользователя


29/04/13
8965
Богородский
DemISdx в сообщении #1660627 писал(а):
Между ними простых нет.

Не только между ними нет других простых, но и вообще между любыми из 13 родных, то есть указанных явно чисел кортежа? Так?

А есть ли хоть одно простое число в других цепочках (они вроде бы называются TPT и STPT) между родными ?

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 18:56 


22/11/17
70
Нет.
Поскольку речь идет про последовательные простые числа.
Последовательные, т.е. одно за другим...

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 19:06 
Аватара пользователя


29/04/13
8965
Богородский
Вот именно. Значит я прав, что

Symmetric Сonsecutive Prime Tuples

это более точное название для проекта?

Ещё очень прошу ответить на мой вопрос выше, где речь шла о кортеже [0, 6, 12].

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 19:14 
Заслуженный участник


20/08/14
12117
Россия, Москва
Yadryara
Что Вам с названия? Назвали и назвали.
Хотите правильности названия - придётся отказаться от первого слова, symmetric.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 19:38 
Аватара пользователя


29/04/13
8965
Богородский
Dmitriy40 в сообщении #1660637 писал(а):
Yadryara
Что Вам с названия?

Я хочу объяснить как на примере лишь одного слова между людьми возникает непонимание, причём надолго. Как Вы думаете vicvolf видел слово "последовательных" в названии темы, в которой участвовал?

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 20:40 
Аватара пользователя


29/04/13
8965
Богородский
Вот и другой пример. Писал в марте:

Yadryara в сообщении #1633660 писал(а):
Dmitriy40, Вы вроде бы давно в теме. Есть ли какой-то полный список симметричных паттернов нечётной длины, диаметром скажем до 100?

Почему же я не написал допустимых паттернов? Да потому что был уверен, что и без этого слова буду правильно понят. Конечно речь о допустимых паттернах, на кой нам какие-то другие?? И Вы меня поняли. Вопрос казалось бы исчерпан.

Но нет, почти месяц спустя нам вдруг объясняют, что дважды два — четыре:

vicvolf в сообщении #1636843 писал(а):
Это называется определением "проходимости" кортежа данной структуры, т.е. может ли быть кортежей такой структуры бесконечное количество. А нас только такие кортежи и интересуют.

А не потому ли, что я не проговорил явно "допустимый" или "разрешённый"...

А может просто проще не читать внимательно тему, но зато вот такое написать:

vicvolf в сообщении #1636724 писал(а):
У меня такое впечатление, что из участников данной темы по теории чисел, никто теорию чисел никогда не читал и не знает, что такое приведенная система вычетов :facepalm:

А с чего вдруг такое впечатление?

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 23:15 
Заслуженный участник


20/08/14
12117
Россия, Москва
Как-то Вы очень уж издалека решили зайти к ответу на вопрос "как применить HL1 к конкретному паттерну", но дело Ваше.
Я бы вообще на него ответил просто: "подставить в готовую программу и запустить, она посчитает". Собственно я же так и сделал.
Достаточно понимания разницы между чистыми, грязными и всеми кортежами. Ну и связанных понятий из теории вероятностей конечно.
А вот почему программа правильно считает HL1 - это совсем другой вопрос. Его и я не вполне понимаю.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.11.2024, 23:43 
Аватара пользователя


29/04/13
8965
Богородский
Dmitriy40 в сообщении #1660679 писал(а):
Я бы вообще на него ответил просто: "подставить в готовую программу и запустить, она посчитает".

Ну так я это уже говорил, Вы забыли? Недавно же:

Yadryara в сообщении #1654456 писал(а):
Бери программы, да считай какие хочешь кортежи, не длиннее 19-ти.

Можно и длиннее кортежи посчитать, но с определёнными оговорками.

А если человек хочет разобраться детально, то начинать надо с самого простого примера. Я потому и спрашивал про 3-12. Ответа пока нет — подожду ещё. Не буду же я сам себе объяснять...

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение05.11.2024, 02:15 


22/11/17
70
Yadryara в сообщении #1660636 писал(а):
Ещё очень прошу ответить на мой вопрос выше, где речь шла о кортеже [0, 6, 12].
Мне значения [0, 6, 12] не говорят ни о чем. С тем же, наверное, успехом могу написать [6, 60, 12, 12, 6, 12] или [10, 58, 4, 58, 28, 10]...

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение05.11.2024, 07:16 
Аватара пользователя


29/04/13
8965
Богородский
Хммм... Ну разве что Вы рассматриваете обозначение [0, 6, 12] в отрыве от контекста. Но я ведь просил ответить именно на этот пост:

Yadryara в сообщении #1660571 писал(а):
Минимальный такой кортеж нечётной длины с минимальным диаметром — 3-12. Или, в другой записи — [0, 6, 12].

Причем просил ответить, надеясь что Вам будет и интуитивно понятно о чём идёт речь.

И к этим вопросам

Yadryara в сообщении #1660571 писал(а):
Какие кортежи здесь грязные, какие чистые и не пропустил ли я какой-нибудь кортеж 3-12?

я добавлю ещё один. Что обозначают записи 3\3, 3\4 и 3\5 справа от кортежей?

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение05.11.2024, 17:54 
Аватара пользователя


29/04/13
8965
Богородский
:-) Проздравляю: экватор преодолели в ночь на 3-е ноября.

$\tikz[scale=.1]{
\fill[green!90!blue!50] (60,300) rectangle (80,310);
\draw[step=20cm] (0,300) grid +(80,30);
\draw (0,330) -- (80,330);
\draw (0,310) -- (80,310);
\node at (10,325)[blue]{\textbf{Dmitriy40}};
\node at (30,325){\textbf{Yadryara}};
\node at (50,325){\textbf{DemISdx}};
\node at (70,325){\text{Всего}};
\node at (10,315){4039};
\node at (30,315){572};
\node at (50,315){\text{3164}};
\node at (70,315){\text{7775}};
\node at (10,305){29.2 \%};
\node at (30,305){4.1 \%};
\node at (50,305){22.8 \%};
\node at (70,305){56.2 \%};
}$

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение07.11.2024, 09:38 
Аватара пользователя


29/04/13
8965
Богородский
Считал и считаю много разной статистики. Кое-что покажу.

Код:
Юнитов     278    800   1896    3140    3578    2400    1208    352
                        1490    2687     977       0     707
Группа     G23    G24    G25     G26     G27     G28     G29    G30

  12\19    778 + 2962 + 7137 + 15101 +  7096 +        + 7225 + 4165   =    44464
  13\19   1137 + 3789 + 8322 + 17399 +  7765 +        + 7243 + 4037   =    49692
  14\19    928 + 3082 + 6221 + 12709 +  5262 +        + 4531 + 2419   =    35152    1.41
  15\19    493 + 1545 + 3007 +  5735 +  2221 +        + 1778 +  931   =    15710    2.24
  16\19    137 +  413 +  779 +  1439 +   550 +        +  375 +  199   =     3892    4.04
  17\19     17 +   54 +   98 +   177 +    65 +        +   46 +   22   =      479    8.13
  18\19      3 +    3 +    3 +     9 +     0 +        +    0 +    1   =       19   25.21
  19\19

Последняя строка — наша цель. Предпоследняя — дро. И вот по этому дро нет сил отвлечься от сильных флуктуаций.

Ну и главный вопрос: какой же средний кэф должен стоять в конце последней строки?

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение07.11.2024, 10:42 
Аватара пользователя


29/04/13
8965
Богородский
Можно прикинуть так. Здесь стата по $54\%$ диапазона $0-67\#$

$$\frac{4 + 68 + 278  + 800 + 1490 + 2687 + 977 + 0 + 707 + 352 + 78 + 20 + 2}{13824} = \frac{7463}{13824} \approx 0.54$$

Ну и мы ожидаем $0.51$ чистого кортежа 19-252 в том же диапазоне. Пока попросту дважды делим $19$ штук найденных дро:

$$\frac{19}{0.54 \cdot0.51 } \approx 68.99$$

И получили тот самый кэф.

Мы уже знаем что один искомый чистый кортеж 19-252 в диапазоне $0-67\#$ ожидаемо встретится в среднем на 13-14 грязных 19-к, иными словами:

Одна штука 19\19 на 13-14 штук 19\20+

И в том же диапазоне ожидаемо встретится

Одна штука 19\19 на 68-70 штук 18\19.

Пока вижу так, потом возможно уточнение последней оценки.

Ну а распределение кэфов по последней строке в таблице реальных кэфов может быть например, таким:

Код:
len19        G24     G25     G26     G27     G28      G29

v13/v14     1.23    1.34    1.37    1.48             1.60
v14/v15     1.99    2.07    2.22    2.37             2.55
v15/v16     3.74    3.86    3.99    4.04             4.74
v16/v17     7.65    7.95    8.13    8.46             8.15
v17/v18    18.00   32.67   19.67                   
v18/v19       66      67      68      69      70       71         ???

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение09.11.2024, 09:24 
Заслуженный участник


20/08/14
12117
Россия, Москва
Диапазон 3000-3999 досчитан. Перешёл в 12000-12599. Это дней на 9-10.
4ххх и 5ххх Демис обсчитал.
6ххх, 7ххх, 8ххх, 9ххх отданы Демису.
10ххх и 11ххх свободны.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение10.11.2024, 08:43 
Аватара пользователя


29/04/13
8965
Богородский
Yadryara в сообщении #1660172 писал(а):
Если придётся считать $0-71\#$, то надо стремиться сделать такое разбиение, чтобы чужих чисел было поменьше. То есть не $21-33$, как сейчас, а скажем $18-30$.

Давно хотел уточнить.

Если придётся считать $0-71\#$,

то надо придумать такое разбиение, чтобы выделить участок в 10-20% от всего диапазона $0-71\#$, на котором было бы как можно меньше чужих чисел. Потому что, скорее всего, именно на этом участке есть хотя бы одна искомая 19-ка. Напомню, что их ожидается почти 11 штук на весь диапазон.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 1255 ]  На страницу Пред.  1 ... 38, 39, 40, 41, 42, 43, 44 ... 84  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Dmitriy40


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group