Рассматривая соседние квадраты, мы замечаем что из трех соседних квадратов можно получить две соседние разности:
и
;
Причем эти соседние разности, будучи нечетными, отличаются на 2. Таким образом, разность двух соседних разностей соседних квадратов позволяет получить все нечетные числа натурального ряда. Тогда ясно, что существуют такие тройки соседних квадратов, для которых большая или меньшая разность соседних квадратов будет квадратом.
Если же мы рассматриваем соседние кубы, то оказывается, что для получения константы (шага), подобной числу 2 для разности двух соседних разностей соседних квадратов, недостаточно трех кубов. Требуется как минимум 4 соседних куба.
Для 4 кубов мы получаем константу 6, но число разностей соседних кубов, по сравнению с квадратами, удваивается (равно 4). Оказывается, чтобы втиснуться в равенство Ферма, требуется что бы два из трех кубов этого равенства, сами были бы суммой меньших кубов. Здесь, вероятно, мы сталкиваемся со столь почитаемым «спуском».