Доказать:
1.

для


(maxima code)
Код:
f(t) := (a^5+b^5+c^5)^2-3*a*b*c*(a^7+b^7+c^7) ;
r(t) :=
2*(a*b+b*c+c*a)*(a^2*b^2+b^2*c^2+c^2*a^2 - a*b*c*(a+b+c))^2
+ 2/33*(
( (a+b)*c^4-(a^2+a*b+b^2)*c^3 -(a^4-3*a^2*b^2+b^4)*c-a^5-b^5+a^2*b^2*(a+b) )^2
+ ( (b+c)*a^4-(b^2+b*c+c^2)*a^3 -(b^4-3*b^2*c^2+c^4)*a-b^5-c^5+b^2*c^2*(b+c) )^2
+ ( (c+a)*b^4-(c^2+c*a+a^2)*b^3 -(c^4-3*c^2*a^2+a^4)*b-c^5-a^5+c^2*a^2*(c+a) )^2
)
+ 1/6*(
( c^5+(a+b)*c^4-(a+b)^2*c^3 - a*b*(a+b)*c^2-(a^4-b*a^3-b^2*a^2-b^3*a+b^4)*c-a^5-b^5+a*b*(a^3+b^3)+a^2*b^2*(a+b) )^2
+ ( a^5+(b+c)*a^4-(b+c)^2*a^3 - b*c*(b+c)*a^2-(b^4-c*b^3-c^2*b^2-c^3*b+c^4)*a-b^5-c^5+b*c*(b^3+c^3)+b^2*c^2*(b+c) )^2
+ ( b^5+(c+a)*b^4-(c+a)^2*b^3 - c*a*(c+a)*b^2-(c^4-a*c^3-a^2*c^2-a^3*c+a^4)*b-c^5-a^5+c*a*(c^3+a^3)+c^2*a^2*(c+a) )^2
)
+ 265/28512*(
( 3*c^5-(a+b)*c^4-(3*(a^2+b^2)+4*a*b)*c^3+6*(a^3+b^3)*c^2 +(4*a*b*(a^2+b^2)-9*a^2*b^2)*c-3*(a^5+b^5)+2*a*b*(a^3+b^3) )^2
+ ( 3*a^5-(b+c)*a^4-(3*(b^2+c^2)+4*b*c)*a^3+6*(b^3+c^3)*a^2 +(4*b*c*(b^2+c^2)-9*b^2*c^2)*a-3*(b^5+c^5)+2*b*c*(b^3+c^3) )^2
+ ( 3*b^5-(c+a)*b^4-(3*(c^2+a^2)+4*c*a)*b^3+6*(c^3+a^3)*b^2 +(4*c*a*(c^2+a^2)-9*c^2*a^2)*b-3*(c^5+a^5)+2*c*a*(c^3+a^3) )^2
)
+ 1/363499488*(
( 177*c^5+531*(a+b)*c^4-354*(28*a^2-39*a*b+28*b^2)*c^3-177*(a+b)*(3*a^2-34*a*b+3*b^2)*c^2+(8329*(a^4+b^4)-4465*a*b*(a^2+b^2)-14631*a^2*b^2)*c-177*(a+b)*(8*a^4+23*a^3*b-67*a^2*b^2+23*a*b^3+8*b^4) )^2
+ ( 177*a^5+531*(b+c)*a^4-354*(28*b^2-39*b*c+28*c^2)*a^3-177*(b+c)*(3*b^2-34*b*c+3*c^2)*a^2+(8329*(b^4+c^4)-4465*b*c*(b^2+c^2)-14631*b^2*c^2)*a-177*(b+c)*(8*b^4+23*b^3*c-67*b^2*c^2+23*b*c^3+8*c^4) )^2
+ ( 177*b^5+531*(c+a)*b^4-354*(28*c^2-39*c*a+28*a^2)*b^3-177*(c+a)*(3*c^2-34*c*a+3*a^2)*b^2+(8329*(c^4+a^4)-4465*c*a*(c^2+a^2)-14631*c^2*a^2)*b-177*(c+a)*(8*c^4+23*c^3*a-67*c^2*a^2+23*c*a^3+8*a^4) )^2
)
+ 1/28512*( 7*(a^5+b^5+c^5) -11*(a^3*(b^2+c^2)+b^3*(c^2+a^2)+c^3*(a^2+b^2)) - a*b*c*(12*(a^2+b^2+c^2)-27*(a*b+b*c+c*a)) )^2
+ 24275/363499488*(a^2+b^2+c^2-a*b-b*c-c*a)^2*(41*(a^3+b^3+c^3)-5*(a+b)*(b+c)*(c+a)-83*a*b*c)^2
+ 247105/20194416*(a^2+b^2+c^2-a*b-b*c-c*a)^2*(a-b)^2*(b-c)^2*(c-a)^2 + 124711/45437436*(a^2+b^2+c^2-a*b-b*c-c*a)^5 ;
rat(f(t) - r(t));