2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Треугольники
Сообщение27.08.2024, 11:54 


21/12/16
689
Имеются два треугольника $ABC$ и $PQR$. Вершина $A$ является серединой стороны $QR$. Вершина $P$ является серединой стороны $BC$. Прямая $QR$ является биссектрисой угла $BAC$. Прямая $BC$ является биссектрисой угла $QPR$.
Доказать: $|AC|+|AB|=|PR|+|PQ|$

 Профиль  
                  
 
 Re: Треугольники
Сообщение27.08.2024, 12:58 
Заслуженный участник
Аватара пользователя


13/08/08
14494
Так и хочется рассмотреть вырожденный случай:
$\triangle ABC [(0,0),(0,2),(2,0)];\quad \triangle QPR [(-121,-121),(1,1),(121,121)];$
Его нельзя пошевелить?

 Профиль  
                  
 
 Re: Треугольники
Сообщение02.09.2024, 14:35 
Заслуженный участник
Аватара пользователя


23/08/07
5486
Нов-ск
За рисунок не взялся (нет удобной рисовалки), поэтому так.

ОБОЗНАЧЕНИЯ.
$CA$ продлим за т. $A$ до т. $B'$ так, что $AB'=AB$
$RP$ продлим за т. P$ до т. Q'$ так, что $PQ'=PQ$
$CB$ и $RQ$ пересекаются в т. $O$
Продолжение $CB$ и срединный перпендикуляр к $QR$ (идёт из т. $A$) пересекаются в т. $A'$
Продолжение $RQ$ и срединный перпендикуляр к $CB$ (идёт из т. $P$) пересекаются в т. $P'$
$\angle OBQ = \alpha, \angle OQB = \beta $

НАХОДИМ УГЛЫ
$PO*OA' = AO*OP'$ (т.к. $PP'A'A$ - окружность)
$PO*OA' = QO*OR$ (т.к. $PQA'R$ - окружность)
$AO*OP' = BO*OC$ (т.к. $ABP'C$ - окружность)
Получили $QO*OR=BO*OC$, т.е. $CQBR$ - окружность, поэтому $\angle ORC = \alpha, \angle OCR = \beta $

Теперь утверждение задачи ($CA+AB'=RP+PQ'$) следует из равенства треугольников $CRQ'$ и $RCB'$ (по двум сторонам и углу между ними).
Действительно, $CQ'=QB=B'R$, $CR$ - общая, $\angle Q'CR = \angle B'RC = \alpha + \beta$

 Профиль  
                  
 
 Re: Треугольники
Сообщение03.09.2024, 10:14 
Заслуженный участник
Аватара пользователя


23/08/07
5486
Нов-ск
Изображение

 Профиль  
                  
 
 Re: Треугольники
Сообщение03.09.2024, 21:46 


21/12/16
689
Это самое изящное решение , что я видел. Я несколько раз предлагал эту задачу разным людям. Мое собственное решение -- бруталфорс: аналитическая геометрия+программа символьных вычислений

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihiv, ИСН


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group