2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Вопросы из элементарной топологий
Сообщение07.06.2024, 22:40 
Заслуженный участник


18/01/15
3231
Bixel в сообщении #1641788 писал(а):
Since $\mathbb R$ is the only open set that can cover $0$, any open cover of $[-1, 1]$ would necessarily have to contain $\mathbb R$. But then $\mathbb R$ alone is enough to cover $[-1, 1]$?
This is correct.

To give you an example of accurate argument, I shall rewrite the latter argument in a very detailed way.

"Prove that $[-1,1]$ is a compact subset in topology $({\mathbb R}, \varepsilon_0)$. Suppose that $\{G_i\mid i\in I\}$ is a cover of $[-1,1]$ by open sets (here $I$ is some set, indexing elements of the cover). We have to prove that this cover contains a finite sub-cover covering $[-1,1]$.
As $0\in[-1,1]$, there exists an element of the cover, $G_i$, containing $0$. But the only open set in the topology $({\mathbb R}, \varepsilon_0)$, containing $0$, is ${\mathbb R}$. Therefore, $G_i={\mathbb R}$ for some $i\in I$. Since ${\mathbb R}\supset [-1,1]$, we see that the cover $\{G_i\mid i\in I\}$ contains a finite set of elements (in fact, a single element) covering $[-1,1]$. "

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение08.06.2024, 01:34 


12/05/24
41
vpb

Thank you for that nice write-up.

mihaild в сообщении #1641774 писал(а):
Space is locally compact if for any $x$ there is open $U$ and compact $K$ s.t. $x \in U \subseteq K$.


Is it always the case that $K \subseteq X$ in a topological space $(X, \tau)$?

I think $x \in \mathbb R \subseteq \mathbb R$ should work because $\mathbb R$ is compact in itself since an arbitrary open cover for $\mathbb R$ looks like $\{\mathbb R, G_2, G_3,...,\}$ and $\{\mathbb R\}$ definitely covers $\mathbb R.$

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение08.06.2024, 02:16 
Заслуженный участник
Аватара пользователя


16/07/14
9151
Цюрих
Bixel в сообщении #1641800 писал(а):
Is it always the case that $K \subseteq X$ in a topological space $(X, \tau)$?
This is a strange question. We can ask about compactness only for subsets of topological space (and we need to specify which one).
Bixel в сообщении #1641800 писал(а):
an arbitrary open cover for $\mathbb R$ looks like $\{\mathbb R, G_2, G_3,...,\}$
Can you prove it?

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение08.06.2024, 02:22 


12/05/24
41
mihaild в сообщении #1641801 писал(а):
Can you prove it?


None of $G_i$ contain $0$ unless $G_i = \mathbb R$ and so every open cover must carry $\mathbb R$ for otherwise no open cover will cover $0$.

-- 08.06.2024, 02:56 --

Granted everything above is correct, let's move on to $(\mathbb Q, l_0).$ Let $S \subseteq \mathbb Q$. Then $T = \{\{x, 0\}: x \in S\}$ is an open cover. However $T$ has no finite subcover as it would miss some elements of $S$. Thus no point in $\mathbb Q$ has a compact neighborhood. Does it make sense?

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение08.06.2024, 03:11 
Заслуженный участник
Аватара пользователя


16/07/14
9151
Цюрих
Bixel в сообщении #1641802 писал(а):
None of $G_i$ contain $0$ unless $G_i = \mathbb R$ and so every open cover must carry $\mathbb R$ for otherwise no open cover will cover $0$.
Yes. To give example of full proof:
Let $\{G_i | i \in I\}$ be open cover of $\mathbb R$. There is some $i$ s.t. $0 \in G_i$, then $G_i = \mathbb R$, and $\{G_i\}$ is finite subcover.

The last (simple) step is to show that for any point $x$ there is open set $U$ s.t. $x \in U \subseteq \mathbb R$.
Bixel в сообщении #1641802 писал(а):
However $T$ has no finite subcover as it would miss some elements of $S$
That's not necessary true.

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 00:38 


12/05/24
41
Long time no see. Sorry, I have so many competing demands. The whole thing fell by the wayside.

Anyway,

mihaild в сообщении #1641803 писал(а):
That's not necessary true.


Another possibility is to consider the set of all $[-x, x] \cup \{0\}.$ Then $\bigcup_{x = 1}^n [-x, x] \cup \{0\} = [-n, n] \cup \{0\}$, but $n + 1 \not \in  [-n, n] \cup \{0\}$.

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 01:28 
Заслуженный участник
Аватара пользователя


16/07/14
9151
Цюрих
$0 \in [-x, x]$ already.

Can you remind me, what do you want to prove? That $(\mathbb Q, L_0)$ isn't locally compact? For which point you want to prove that it doesn't have compact neighbourhood?

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 01:32 


12/05/24
41
mihaild в сообщении #1643231 писал(а):
That $(\mathbb Q, L_0)$ isn't locally compact?


Yes, thats exactly right. So for any $x \in \mathbb Q$ I believe $\cup [-x, x]$ covers $\mathbb Q$. But the finite union of these intervals would miss points like $x + 1$.

-- 19.06.2024, 01:53 --

If correct, this proof should also double as an argument for noncompactness of $(\mathbb Q, L_0)$.

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 02:00 
Заслуженный участник
Аватара пользователя


16/07/14
9151
Цюрих
Bixel в сообщении #1643232 писал(а):
for any $x \in \mathbb Q$ I believe $\cup [-x, x]$ covers $\mathbb Q$
This is again meaningless: what variable do you take union by? If $x$ - then what is role of "for any $x \in \mathbb Q$"?

Also, to disprove local compactness, you need to show a point that has no compact neighbourhood. What point do you take?
(even if you think your proof works for any point, please choose some concrete, it will simplify reasoning)

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 03:00 


12/05/24
41
mihaild в сообщении #1643235 писал(а):
you need to show a point that has no compact neighbourhood. What point do you take?


If we show $\mathbb Q$ has no compact subset we are done.

Let $x$ be natural, $S \subseteq \mathbb Q$ and $T = S \cup \{0\}$. Then the union of all $(-x, x)$ covers $\mathbb Q$ and so $T$ is covered as well. Now $\bigcup_{x=1}^K (-x, x) = (-K, K)$ with $K+1 \not \in (-K, K)$. Thus $T$ has no finite subcover.

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 11:15 
Заслуженный участник
Аватара пользователя


16/07/14
9151
Цюрих
Bixel в сообщении #1643237 писал(а):
If we show $\mathbb Q$ has no compact subset we are done.
This is impossible, because any finite subset is compact.
Bixel в сообщении #1643237 писал(а):
Thus $T$ has no finite subcover.
Why? It's not necessary that $K + 1 \in T$.
Consider, for example, $S = \{\pi, e\}$ in your construction.

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 22:28 


12/05/24
41
mihaild в сообщении #1643250 писал(а):
This is impossible, because any finite subset is compact.


This gives me an idea. Let $x$ be rational. Then we have $x \in \{0, x\} \subseteq \{0, x\}$. Since $\{0, x\}$ is a finite subset of $\mathbb Q$ and therefore compact it follows that $(\mathbb Q, L_0)$ is locally compact. The only problem is that $\{0, x\}$ is unordered.

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение19.06.2024, 23:46 
Заслуженный участник
Аватара пользователя


16/07/14
9151
Цюрих
But we need not just compact set containing $x$, we need open set containing $x$ and contained in some compact set.
Bixel в сообщении #1643311 писал(а):
The only problem is that $\{0, x\}$ is unordered
Why is this a problem? What has order to do with this question?

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение21.06.2024, 20:24 


12/05/24
41
mihaild в сообщении #1643324 писал(а):
But we need not just compact set containing $x$, we need open set containing $x$ and contained in some compact set.


Isn't $\{x, 0\}$ both open and compact? Failing that, $x \in \mathbb Q \subseteq \mathbb Q$ should do the trick provided $\mathbb Q$ is compact in the given space.

mihaild в сообщении #1643324 писал(а):
Why is this a problem? What has order to do with this question?


I figured since $\mathbb Q$ is ordered we want all its subsets ordered as well. Guess not.

 Профиль  
                  
 
 Re: Вопросы из элементарной топологий
Сообщение21.06.2024, 22:20 


12/05/24
41
I suspect $\mathbb Q$ is not compact. Will prove it later. No infinite subset of rationals is compact. Will have to prove this, too. Then if $K$ is a compact subset of rationals, then $\frac 15 \in [0, \frac 15] \not \subset K.$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 45 ]  На страницу Пред.  1, 2, 3

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group