Прекрасную теорему обнаружил в одной из недавних тем:
"Площадь квадрата, построенного на основании равнобедренного треугольника, равна удвоенному произведению длины основания на длину проекции боковой стороны на основание".
Не знаю, в шутку это было написано или нет, но это в принципе и не важно. Теорема потрясает своей отрицательной полезностью: усилия, направленные на чтение, осмысливание и запоминание этой теоремы превышают усилия, которые бы требовались на её перевывод как подзадачи в любой содержащей её задаче. Фактически, все что происходит в этой теореме - это равенство
. Поражает то, насколько слова естественного языка проигрывают математической нотации: то, что очень коротко и просто записывается на символах, при переводе в слова формирует совершенно дикую речевую конструкцию.
Противоположностью этой теореме можно привести, например, теорему синусов -
очень полезную теорему. Но что отличает первую от второй? Я вижу так, что отличие в алгебре: в первой теореме никакой алгебры нету, а во второй теореме (синусов) концентрация алгебры очень большая.
Мысль, которую я хотел бы обсудить в этой теме, заключается в том, что не все теоремы одинаково полезны. Более того, я постепенно прихожу к выводу, что огромное количество теорем (по моим ощущениям
%) по сути играют довольно второстепенную роль.
Важны не теоремы. Важна техника! Теорема синусов - это техника; теорема, которая в шапке темы - это мертвый факт.
Еще один пример.
Цитата:
Предположим, что
— группа такая, что для некоторого
и всех
имеет место равенство
. Обозначим через
подмножество всех n-х степеней в
, а через
— множество всех элементов из
, порядок которых делит
. Показать, что
и
- нормальные подгруппы в
и
Раньше я пытался доказывать теоремы вслепую и до победного. И вот, допустим, я бы прочитал эту теорему и стал бы её доказывать.
Теоремы о гомоморфизме пока еще не было! Сейчас я понимаю, что это было бы максимально глупым решением. Не надо эту теорему доказывать. Её вообще знать не надо. А вот теорему о гомоморфизме - надо.
Возвращаясь к основному вопросу темы. Я сейчас немного изучаю теорию групп и я поражен, насколько мало в ней техники. Результатов - пруд пруди. А техники не о чем. Мне интересно, почему столько людей плодит столько бесполезных фактов, но никто не хочет привести теорию в порядок. Теория групп - это просто ситуативный пример. Все написанное я считаю подходящим к большинству разделов математики из тех, которые мне довелось изучать. Забавно кстати, что в элементарной геометрии как раз таки техники много. Она - один из немногих разделов, к которому у меня в этом плане нету претензий.