...малопривлекательна. Более того, в синтетической геометрии нет места подлинному исследованию, подобному тому, которое происходит сейчас в области анализа, алгебры, комбинаторики или дифференциальных уравнений...
Речь идет о той классической части геометрии, которая ныне широко представлена на школьных олимпиадах. Например, в России даже есть
олимпиада имени И.Ф. Шарыгина, которая полностью посвящена именно такой геометрии. Довольно полное представление о такой геометрии также дает книжка
Evan Chen. Euclidean Geometry in Mathematical OlympiadsНо то всё олимпиады, они рассчитаны на ограниченное время, а потому задачи в них естественно ограничены по сложности и весьма редко достигают той степени глубины, которая присуща вопросам, разбираемым на страницах среднего современного математического журнала.
Вместе с тем, был такой журнал -
Forum Geometricorum, который позиционировался как журнал для статей исследовательского характера именно по такого рода геометрии. Но статьи в нем редко превышали по объему дюжину страниц, а если и превышали иногда, то представляли собой разбор нескольких разрозненных задач, хотя и имеющих единый сюжет, но очень напоминающих задачи олимпиадного характера, и решение которых исчерпывается парой-тройкой лемм, описывающих конфигурации, хорошо известные тем, кто занимался олимпиадной геометрией. Сравнить это со статьями в Annals of Mathematics или любого топ5 журнала по какой-либо области математики - земля и небо по содержанию. Видимо, поэтому журнал этот пребывает в неопределенном состоянии с 2019 года...
Наиболее "близкие" к сабжу задачи, которыми занимались профессиональные математики, в некоторых каталогах даже идущие с тегами "euclidean geometry", "plane geometry" - это, к примеру, плотные упаковки шаров, задачи Эрдёша комбинаторного характера про точки на плоскости, отстоящие друг от друга на целом расстоянии или, скажем,
Sofa problem не имеют отношения к предмету этого поста, поскольку не относятся к той геометрии, которую я имел в виду выше. Многие вопросы такого рода - это скорее комбинаторика в обличии геометрии, а некоторые носят аналитический или вычислительный характер. Это я признаю как полноценную область исследований, поскольку по таким темам пишутся и большие статьи, и монографии и такое прочее, что бывает присуще области
профессиональных интересов математиков.
Этим постом предлагаю оспорить тезис из первого предложения, если у вас есть примеры исследовательских вопросов по упомянутой геометрии. Вполне может быть так, что я что-либо пропустил. Впрочем, сильно в этом сомневаюсь... Либо же добавить конструктивные соображения по поводу того, что такая геометрия все-таки не есть предмет профессиональной деятельности математиков. Много всего написано про то, что геометрия представляет интерес только как вспомогательный, скажем, раздел в (российском) школьном курсе, который учит детей писать доказательства теорем; а в некоторых странах так вообще отсутствует и в школьном курсе...