2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Центральная сила
Сообщение16.04.2024, 20:42 


30/04/19
215
$\vec{F}=F(r)\vec{e_r}$
Тогда
$(\vec{F},\vec{dr})=(F(r)\vec{e_r},dr\vec{e_r})=F(r)dr$
Это доказательство потенциальности силы $\vec{F}$.

Почему можно считать, что $\vec{dr}=dr\vec{e_r}$? Ведь от вектора $\vec{e_r}$ тоже нужно брать дифференциал.

 Профиль  
                  
 
 Re: Центральная сила
Сообщение16.04.2024, 20:53 


14/04/24
17
Так нельзя считать, в смещении будет ещё и перпендикулярная радиус-вектору часть.

 Профиль  
                  
 
 Re: Центральная сила
Сообщение16.04.2024, 21:06 


30/04/19
215
Kir_iii
А почему именно перпендикулярная?

$\frac{de_r}{dr}=e_{\varphi}$?

 Профиль  
                  
 
 Re: Центральная сила
Сообщение16.04.2024, 21:11 


14/04/24
17
Не надо дифференцировать базисные вектора, по ним надо раскладывать.

 Профиль  
                  
 
 Re: Центральная сила
Сообщение16.04.2024, 21:43 


30/04/19
215
А как понять, что получается перпендикулярный вектор?

 Профиль  
                  
 
 Re: Центральная сила
Сообщение17.04.2024, 06:11 
Аватара пользователя


11/12/16
14106
уездный город Н
Norma в сообщении #1636603 писал(а):
А как понять, что получается перпендикулярный вектор?


А он и не будет перпендикулярный.

Запишите, чему равен $d \vec{r}$ в сферической системе координат.
Если не знаете, то посмотрите в учебнике и перепишите сюда.

 Профиль  
                  
 
 Re: Центральная сила
Сообщение17.04.2024, 07:09 
Заслуженный участник


28/12/12
7949
Norma
Вы обозначаете одним и тем же символом приращение базисного вектора и ваше перемещение. Так нельзя.
Обозначьте $d{\bf r}={\bf e}_rdr$, а перемещение будет $d{\bf R}$, и его нужно разложить по базисным векторам.
А еще можно записать $\nabla U(r)$ в сферической системе координат и сравнить с вашим выражением для силы.

 Профиль  
                  
 
 Re: Центральная сила
Сообщение17.04.2024, 12:38 


14/04/24
17
Norma в сообщении #1636603 писал(а):
А как понять, что получается перпендикулярный вектор?

Добавлю маленький совет, если вы решаете физическую задачу, то думать надо не формулами, а понятиями. Вклад в работу центральной силы вносит только радиальное перемещение.

 Профиль  
                  
 
 Re: Центральная сила
Сообщение17.04.2024, 20:45 


29/01/09
718
Kir_iii в сообщении #1636651 писал(а):
Добавлю маленький совет, если вы решаете физическую задачу, то думать надо не формулами, а понятиями. Вклад в работу центральной силы вносит только радиальное перемещение.

во правильный ответ.... сферическая система координат определяется радиусом сферы, на котором лежит точка, и сферическими координатами. Любое элементарное перемещение расскладывается по базису один которого направлен по радиус-вектору, соединяющее начало координат и выбранную точку, и два других которые лекжат в плоскости касательной с сфере, и оно ортогональную радиальному орту и стало быть работа при любом перемещении по сфере равна 0. Вот и весь сказ без всяких формул.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group