2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Найти базис и размерность линейного подправстранства
Сообщение11.03.2024, 18:41 


20/02/24
1
Проскуряков, 1310. Прокомментируйте, пожалуйста.
Найте базис и размерность линейных подпространств, натянутых на следующие системы векторов

$
a_1 = (1, 0, 0, -1), 

a_2 = (2, 1, 1, 0), 

a_3 = (1, 1, 1, 1), 

a_4 = (1, 2, 3, 4), 

a_5 = (0, 1, 2, 3)
$

Сделать это, вроде, можно приведя матрицу, полученную из данных векторов, записанных в строку, к ступенчатому виду. Ненулевые строки матрицы будут базисом подпространства. Получился такой базис:

$
(2, 1, 1, 0), 

(0, 1, 0, 1), 

(0, 0, 1, 1)
$

Значит, размерность равна 3.

Правильно ли я все сделал? Спасибо!

 Профиль  
                  
 
 Re: Найти базис и размерность линейного подправстранства
Сообщение11.03.2024, 20:01 
Заслуженный участник


23/05/19
1214
halva в сообщении #1632495 писал(а):
Сделать это, вроде, можно приведя матрицу, полученную из данных векторов, записанных в строку, к ступенчатому виду. Ненулевые строки матрицы будут базисом подпространства.

Это правильно. Ну, только не ненулевые строки, исходные векторы, которые соответствуют этим ненулевым строкам. А правильность вычислений можете проверить, например, тут https://www.wolframalpha.com/input?i=re ... C+19%7D%7D

 Профиль  
                  
 
 Re: Найти базис и размерность линейного подправстранства
Сообщение11.03.2024, 20:04 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Правильно.

Тут очевидно, что $a_2=a_1+a_3$ и $a_4=a_3+a_5$ (не знаю, предполагался ли такой способ рассуждения составителем), так что $a_2$ и $a_4$ можно выбросить из системы векторов, не меняя её ранга. А для оставшихся трёх векторов довольно очевидна их линейная независимость.

Кстати, интересный момент. Возьмите любой из Ваших векторов, из его первой координаты вычтите вторую, затем третью и потом прибавьте четвёртую. Получится нуль. Например:
Для $a_2$: $2-1-1+0 = 0$
Для $a_4$: $1-2-3+4 = 0$
Для $a_5$: $0-1-2+3=0$
И так для всех пяти векторов. Странно, правда? Что это значит? :-)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Cynic


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group