2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2, 3, 4  След.
 
 Кубы и квадраты
Сообщение06.03.2024, 21:39 


17/06/18
429
Предположим что для натуральных, взаимно простых чисел $x,y,z$, где $x$ нечетное, выполняется равенство:
$x^3=z^3-y^3$ (1);
Любой куб натурального числа может быть представлен в виде:
$x^3=3(x-1)^3-3(x-2)^3+(x-3)^3+6$ (2);
С учетом (2) можно записать (1) в виде:
$x^3=3(x-1)^3-3(x-2)^3+(x-3)^3+6=3((z-1)^3-(y-1)^3)-3((z-2)^3-(y-2)^3)+((z-3)^3-(y-3)^3)$ (3);
Чтобы правая часть второго равенства (3) приобрела вид левой, должно выполняться:
$(z-1)^3-(y-1)^3=(x-1)^3+1$ (4.1); $(z-2)^3-(y-2)^3=(x-2)^3+8$ (4.2); $(z-3)^3-(y-3)^3=(x-3)^3+27$ (4.3);
Или:
$(z-1)^3-(z-2)^3=(x-1)^3+1$ (5.1); $(y-1)^3-(y-2)^3=(x-2)^3+8$ (5.2); $(z-3)^3-(y-3)^3=(x-3)^3+27$ (4.3);
Из (4.1) и (5.1) следует, что $z$ и $y$ - соседние числа.
А из (4.1) и (1) следует, что одно из них невозможно, и значит невозможны оба.

Рассмотрим теперь равенство квадрата разности двух других квадратов:
$x^2=z^2-y^2$ (6);
Любой квадрат натурального числа может быть представлен в виде:
$x^2=2(x-1)^2-(x-2)^2+2$ (7);
С учетом (7) можно записать (6) в виде:
$x^2=2((z-1)^2-(y-1)^2)-((z-2)^2-(y-2)^2)$ (8);
Что бы получить из правой части (8) правую часть (7) должно выполняться:
$(z-1)^2-(y-1)^2=(x-1)^2-1$ (8.1); и $(z-2)^2-(y-2)^2=(x-2)^2-4$ (8.2);
Тогда:
$x^2=2((x-1)^2-1)-((x-2)^2-4)=(2(x-1)^2-2)-((x-2)^2-4)=2(x-1)^2-(x-2)^2+2$ (8.3);
Принимая $z$ и $y$ соседними, нетрудно убедиться что в отличии от кубов, равенства (8.1), (8.2) выполняются вместе с (6).

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение06.03.2024, 21:57 
Заслуженный участник


12/08/10
1699
dick в сообщении #1632028 писал(а):
Чтобы правая часть второго равенства (3) приобрела вид левой, должно выполняться:
Что такое иметь "приобрела вид "? И почему оно должно иметь место?

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение06.03.2024, 22:21 
Заслуженный участник
Аватара пользователя


26/01/14
4900
dick в сообщении #1632028 писал(а):
Чтобы правая часть второго равенства (3) приобрела вид левой, должно выполняться:
Это неверно. Нет, не должно.

Грубо говоря, из того что $1+6=3+4$, не следует ни то, что $1=3,\,6=4$, ни то, что $1=4,\,6=3$.
У Вас какое-то похожее ошибочное рассуждение.

Обратите также внимание: чтобы левая часть была равна правой при некоторых $x,y,z$, вовсе не обязательно, чтобы она алгебраически приводилась к правой части.
То есть правая часть вовсе не обязана "приобретать вид левой" с буквенными обозначениями, просто её значение может совпасть со значением левой части для каких-то $x,y,z$. Даже если у них совсем разный вид.

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение06.03.2024, 23:23 


17/06/18
429
Это не единственный вариант представления (1), но этот вариант обязательно существует, если выполняется (1).

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение07.03.2024, 02:06 
Заслуженный участник
Аватара пользователя


16/07/14
9361
Цюрих
И еще раз говорю: пишите кванторы (ну или что-то, из чего они легко восстанавливаются). Без всяких "вариант существует".

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение07.03.2024, 16:48 
Заслуженный участник
Аватара пользователя


26/01/14
4900
dick в сообщении #1632037 писал(а):
этот вариант обязательно существует, если выполняется (1)

1) Какой "этот" вариант?
2) Что значит "вариант существует"? Это значит, что он возможен? Или что он обязательно выполняется?
3) И почему он "обязательно существует"?

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение07.03.2024, 21:38 


17/06/18
429
1. "Этот" вариант, это вариант равенств (4.1), (4.2), (4.3).
2. В приведенной цитате сказано "обязательно существует", так и есть.
3. Если левые части равенства равны, то правые также равны.

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение07.03.2024, 22:04 
Заслуженный участник
Аватара пользователя


26/01/14
4900
dick в сообщении #1632143 писал(а):
Если левые части равенства равны, то правые также равны
Но никакие отдельные слагаемые в левой части не обязаны быть равны каким-то отдельным слагаемым в правой части. Контрпример я привёл выше: $1+6=3+4$, хотя ни одно слагаемое в левой части не равно ни одному слагаемому в правой части.
Непонятно также происхождение слагаемых $1$, $8$, $27$ в (4.1), (4.2), (4.3) и в (5.1), (5.2), (5.3). Откуда они вообще взялись?

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение08.03.2024, 14:47 


17/06/18
429
Не то написал, следовало сказать: Если левые части двух равенств равны, то правые также равны, вплоть до идентичности.
Я не против Вашего контрпримера, но притом что 1+6=3+4, остается и 1+6=1+6.
Что касается чисел 1, 8, 27, они, с учетом знаков "+" и "-", и коэффициентов для трех слагаемых правой части (3), обеспечивают идентичность этой правой части (после подстановки (4.1), (4.2), (4.3)), и правой части (2).

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение08.03.2024, 15:43 
Заслуженный участник
Аватара пользователя


26/01/14
4900
dick в сообщении #1632210 писал(а):
Что касается чисел 1, 8, 27, они, с учетом знаков "+" и "-", и коэффициентов для трех слагаемых правой части (3), обеспечивают идентичность этой правой части (после подстановки (4.1), (4.2), (4.3)), и правой части (2).
Если Вы замените $1$, $8$, $27$, например, на $2$, $7$, $21$, то тоже после подстановки всё будет получаться.
Почему $1$, $8$, $27$, а не $2$, $7$, $21$?

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение08.03.2024, 23:13 


17/06/18
429
Потому что правая часть (2) без шестерки это $x^3-6$ и это -6 собрано так: $3(-1)^3-3(-2)^3+(-3)^3$. Поэтому и компенсацию числа -6 проводим почленно, с обратным знаком.

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение08.03.2024, 23:24 
Заслуженный участник
Аватара пользователя


26/01/14
4900
dick
Но $-6$ можно "собрать" и по-другому: $3\cdot 2-3\cdot 7+21$. Если в одном месте в рассуждении оно "собрано" одним способом, то ничего не мешает в другом месте ему быть "собранным" другим способом.

В математике нет таких способов рассуждений, как у Вас.

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение09.03.2024, 08:50 


17/06/18
429
Поскольку $(z-1)$ и $(y-1)$ числа разной четности, а $(x-1)$ - четное, в равенстве (4.1) второе слагаемое правой части должно быть нечетным.
Аналогично для (4.2), второе слагаемое правой части должно быть четным. Так что Ваша тройка не подходит. предлагайте другую.

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение09.03.2024, 15:23 
Заслуженный участник
Аватара пользователя


26/01/14
4900
dick в сообщении #1632275 писал(а):
Так что Ваша тройка не подходит. предлагайте другую.
Я бы мог предложить другую тройку. Но дело в том, что это Вы должны доказать, что нет никаких других вариантов, кроме (4.1)-(4.3) и (5.1)-(5.3). У Вас этого доказательства нет.

 Профиль  
                  
 
 Re: Кубы и квадраты
Сообщение09.03.2024, 18:56 


17/06/18
429
Я не утверждал, что мой вариант-единственный, хотя и сомневаюсь что у Вас есть другая правильная тройка. Не утверждал потому, что считаю что ложность или истинность равенства не зависит от вариантов представления входящих в него частей (слагаемых).
Важно другое, именно то, что не касаясь (4.1)-(4.3) и (5.1)-(5.3), из правой части второго равенства (3) следует что разность соседних разностей несоседних кубов равна разности несоседних разностей соседних кубов.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 59 ]  На страницу 1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group