В частности, нельзя весь куб раскрасить в шахматном порядке. Если бы можно было (в 4-мерном пространстве???), был бы очевидный цикл: "богатые" в чёрных клетках, "нулевики" в белых, и на каждом шаге они меняются.
Это точно. Но на "активно-шахматного" распределения итак не хватает карточек (максимальную площадь которую "богатые" могут занять 60k/4=15k, площадь куба - 60k). Факт про угловых кубиков да, в копилку.
Представим следующее изначальное распределение - куб везде пустой ("нулевики"), все карточки сосредоточены в единственным "пятном" (топологии круга) на кубе.
В середине пятна "очень богатые" (типа десятков карточек), к периферии карточки уменьшаются, сама периферия толстый слой из "бедных" которые граничат потом с нулевиков.
В начале в периферии ничего происходить не будет, карточки в середине будут "расплываться" к периферии.
Если для этого случая можно указать на монотонную меняющуюся интегральную величину, то думаю задача будет решена (она в сумме с количества "нулевиков", даст "энтропию").
Напрашивается следующая мысль.
На данном шаге, раскрасим "богачи" в красном, "не-богачи" (меньше 4 карточек) в синем.
Это разобьет поверхность на красных и синих областей.
Нетный переход карточек, будет только на их границ (т.е. на данном шаге, затронут будет только статус "пограничников").
Притом красные области будут играть роли "истоком" карточек, а синие "стоком" - т.е. суммарное к-во карточек во всех красных областей на любом шаге должно уменьшаться (но это грубо т.к. сами области могут и увеличиваться).
Интуитивно, по мере "расплывания концентрации карточек" будет происходить следующее:
- те красные области в которых избыток карточек будет достаточно большим (у каждого внутри больше четырех карточек) будут увеличивать свою площадь, пока теряют карточек.
- те красные области в которых количество карточек "погранично" (с "четверокарточниками по внутренней границе") будут "рассыхаться" уменьшая свою площадь (из-за отбытия "четверокарточников") пока теряют карточек.
Итого интегрально, на шаг:
- Через красных областей "вытечет" ровно столько карточек, сколько суммарная длина их границ (и столько карточек прибавится к синих областей)
- Красные области потеряют столько клеток сколько "четверокарточников" есть у по внутренней стороне их границ (не более чем потерянных карточек), притом потеря не каждого из них, обязана привести к компенсирующем появлении "богача" в синей области (что сохранит к-во богачей).
Тоесть грубо говоря, интегральная величина "плотности карточек в красных областей"
где
- сумма карточек внутри всех красных областей, а
- их суммарная площадь, на каждом шаге должна уменьшаться.
Поскольку числитель на шаг убывает на величину периметра красных областей, а знаменатель убывает на меньшую (в граничном случае ту же самую) величину, имеем переход
где
. "Плохой" случай равенства, нужно как-то исключить.... :)