Выше же написали, что цикл (бесконечная активность) возможна, только если покрасится вся поверхность кубика.
Интуитивно это "понятно", но не понял откуда это строго следует...
И это
Если карточки у менее чем половины, то картинка будет обязательно "расплываться", и повторно, в цикле такая раскладка недостижима.
Это где-то строго доказано, в каком-то определенном смысле? (и "расплываться" это не то же самое как "не уменьшаться")
Еще кстати в любом цикле обязательно участвуют все жители, причем каждый - одинаковое количество раз (иначе есть житель, который участвует меньше чем его соседи в среднем, и значит получает карточки за цикл).
Что значит "все жители участвуют в цикле"?
Пусть цикл, гипотетический житель "бедняк" который ничего не раздает и остается при себе (в смысле к-ва собственных карточек) на каждый такт на протяжения цикла - "участвует в цикле"?
Во внутренности кластера из "богачей" - где каждый раздает 4 и получает 4 на каждый такт и остается при себе (в смысле к-ва собственных карточек) - "участвует в цикле"?
Пусть у нас есть цикл передачи карточек, в результате которого все остаются при своих.

-й житель раздает карточки

раз. Пусть

. Если есть

, то есть и житель, раздавший

раз, у которого есть сосед, раздавший карточки

раз. Соответственно наш житель раздал

карточек, а получил минимум

карточек. И значит наш житель не остался при своих.
Не понял это рассуждение вообще о чем? Если "есть цикл передачи карточек, в результате которого все остаются при своих" то очевидно что "подпоследовательности действий" (и вообще состояний) любого жителя и его окрестностей, в цикле должны вписываться "кратным" образом...
.... Или это о том когда раздачи совершаются последовательно?

-й житель раздает карточки

раз. Пусть

. Если есть

, то есть и житель, раздавший

раз, у которого есть сосед, раздавший карточки

раз.
А это про

откуда следует,

-тый житель мог получать карточки из разных соседей чтобы ему пришлось раздавать

раз...