2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5
 
 Re: Движение частицы в необычном поле
Сообщение27.02.2024, 10:30 


23/06/20
113
EUgeneUS
Да, теперь все понятно. Проблема не в попытке использовать ЗСЭ. При попытке найти параметр $v_x$, при котором действие будет минимально, я ищу среди тех траекторий, которые не обязательно непрерывные, и поэтому получаю несуразный результат. А если использовать непрерывность совместно с законами сохранения, то собственно говоря нам и этот принцип наименьшего действия нафиг не нужен.
Что же, я думаю задачу мы разобрали. Всем большое спасибо

 Профиль  
                  
 
 Re: Движение частицы в необычном поле
Сообщение27.02.2024, 13:03 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
Poehavchij в сообщении #1631050 писал(а):
Таким образом, метод, в котором мы вычисляем действие , а потом его дифференциируем РАБОТАЕТ но, при использовании ЗСЭ/ЗСИ(?) он ломается
Аккуратное применение закона сохранения энергии и принципа наименьшего действия приводит к принципу Мопертюи. Того самого, про который Арнольд писал, что он везде изложен так, что понять его невозможно, и он тоже не может нарушить традицию.

 Профиль  
                  
 
 Re: Движение частицы в необычном поле
Сообщение28.02.2024, 02:18 


29/01/09
604
EUgeneUS в сообщении #1631079 писал(а):
Отметим, что законы сохранения как раз и следуют из принципа наименьшего действия.

на самом деле не оттуда. А из симметрии (трансляция по времени, или поворты или еще чо нить). Можно выводить из действия, но никто не мешает и впрямую выводить из известных динамических уравнений

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 63 ]  На страницу Пред.  1, 2, 3, 4, 5

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Serg53


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group