Поскольку методов, не включающих априорную информацию, дающих ответ, не существует, то непонятно, как можно сравнивать с ними точность.
Не то, чтобы это было неверно в Высшем Философском Смысле, как минимум, надо быть уверенным, что существует то, что мы изучаем. Но я о куда более приземлённых вещах, об оценках априорных вероятностей. Если они получены из дополнительных наблюдений (как у артиллериста, получившего на полигоне распределение отклонений при первой выстреле, и затем Байесом выводящего правило "три перелёта, один недолёт - прицел меньше на 1 Вд"; или врача, располагающего статистикой болезней и статистикой встречаемости симптомов при каждой болезни), то апостериорные оценки становятся точнее. Если "установлены волевым решением" - можем и ухудшить.
Что до данной задачи - я бы начинал с "доматематической статистики". Постарался бы чётко определить, что понимается под "временем затмения" (время полной фазы, или время частичного затмения в данной точке, или время между первым касанием Земли тенью Луны и уходом тени с Земли, или день затмения целиком, и если последний вариант - то как считать его в разных по долготе точках). Ну и что считать датой смерти (инфаркт вчера, в кому впал сегодня, смерть констатируют завтра). Без такого определения можно будет "подгонять под ответ". Затем собирать данные о смерти по датам (да, и кого? тут тоже может быть подгонка; скажем, мы предполагаем, что композиторы умирают при солнечных затмениях чаще, исходя из сообщений, что несколько композиторов умерли в день затмения, и начинаем перебирать затмения, в каждое из которых отыскивая умершего композитора, засчитывая и любителя, баловавшегося композицией, и студента консерватории, за 228 дней затмений ХХ века перебрать можно; но вот оставшиеся
дней - разве что проверим, кто в эти дни умер из перечисленных в энциклопедии)
И проверяем гипотезу о равенстве пропорций.