2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Несобственный интеграл от произведения функций
Сообщение15.02.2024, 23:37 


15/02/24
11
Здравствуйте, уважаемые форумчане!
Прошу помочь мне разобраться с задачей, которая поставила меня в тупик. Требуется найти несобственный интеграл. Я попытался его найти.
\int\limits_{0}^{\infty} \exp^ {-5t} \cdot 1(t) dt = \begin{pmatrix} u = 1(t) & du = \delta (t) \\ dv = \exp^{-5t} & v=-\frac{ 1 }{ 5 } \exp^{-5t} \end{pmatrix} = 1(t) \cdot \exp^{-5t} 0.2 \left.{}\right|_{0 }^{ \infty } - \int\limits_{0}^{\infty} - 0.2 \delta (t) \cdot\exp^{-5t} = 1(0) \cdot 0.2 + 0.2

В различной литературе пишут, что функция Хевисайда - здесь изображена как 1(t) - либо не определена в 0, либо может быть равна как 0, так и 1, а в некоторых случаях 0.5. Очевидно, что при нахождении несобственного интеграла это играет большую роль. Подскажите, пожалуйста, как правильно определиться с выбором значения функции в 0? От чего это зависит? И вообще, можно ли рассуждать так, как это делаю я?

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 00:16 
Заслуженный участник


02/08/11
7014
Gspace в сообщении #1629730 писал(а):
Очевидно, что при нахождении несобственного интеграла это играет большую роль.
Никакой роли это не играет. При любом определении вашего интеграла таком что он имеет смысл, результат интегрирования не может зависеть от изменения значения функции в одной-единственной точке. (Интуитивно: интеграл — это площадь под кривой, сильно ли меняется площадь если функцию сделать больше на $1$ на бесконечно коротком участке?)

Gspace в сообщении #1629730 писал(а):
можно ли рассуждать так, как это делаю я?
Нет, нельзя так безалаберно относиться к обобщённым функциям таким как $\delta$.

Просто замените в исходном интеграле функцию Хевисайда на единицу — ведь именно единице она равна на интересующем вас участке от $0$ до $\infty$.

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 00:26 


15/02/24
11
warlock66613 в сообщении #1629736 писал(а):
Gspace в сообщении #1629730 писал(а):
Очевидно, что при нахождении несобственного интеграла это играет большую роль.
Никакой роли это не играет. При любом определении вашего интеграла таком что он имеет смысл, результат интегрирования не может зависеть от изменения значения функции в одной-единственной точке. (Интуитивно: интеграл — это площадь под кривой, сильно ли меняется площадь если функцию сделать больше на $1$ на бесконечно коротком участке?)

Gspace в сообщении #1629730 писал(а):
можно ли рассуждать так, как это делаю я?
Нет, нельзя так безалаберно относиться к обобщённым функциям таким как $\delta$.

Просто замените в исходном интеграле функцию Хевисайда на единицу — ведь именно единице она равна на интересующем вас участке от $0$ до $\inf$.


Подскажите, пожалуйста, для чего тогда в этом интеграле вообще может использоваться эта функция? Почему её умышленно оставляют в записи, если, как вы говорите, она на всем промежутке равна 1. Этот интеграл взят из учебника Воронова по теории автоматического управления
http://forumimage.ru/show/112035714

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 00:32 
Заслуженный участник


02/08/11
7014
Надо смотреть откуда это выражение получилось — где-то в промежуточных вычислениях функция была важна, а вот когда всё собрали в интеграл её можно из-под интеграла убрать.

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 00:41 


15/02/24
11
Скажите, а если изменить пределы интегрирования от минус бесконечности до плюс бесконечности, но функцию Хевисайда оставить под интегралом, решение интеграла не должно же поменяться?

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 00:52 
Заслуженный участник


02/08/11
7014
Конечно. И решаться тогда будет так: $$\int\limits_{-\infty}^{\infty} f(t) \mathbf 1(t) dt = \int\limits_{-\infty}^0 f(t) \mathbf 1(t) dt + \int\limits_0^{\infty} f(t) \mathbf 1(t) dt = \int\limits_{-\infty}^0 f(t) 0 dt + \int\limits_0^{\infty} f(t) 1 dt = \int\limits_0^{\infty} f(t) dt$$

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 01:01 


15/02/24
11
warlock66613

Тогда применимо к моей задаче можно ли решить так?
\int\limits_{-\infty}^{\infty} \exp^ {-5t} \cdot 1(t) dt = \begin{pmatrix} u = 1(t) & du = \delta (t) \\ dv = \exp^{-5t} & v=-\frac{ 1 }{ 5 } \exp^{-5t} \end{pmatrix} = 1(t) \cdot \exp^{-5t} 0.2 \left.{}\right|_{-\infty }^{ \infty } - \int\limits_{-\infty}^{\infty} - 0.2 \delta (t) \cdot\exp^{-5t} = 1(-\infty) \cdot 0.2 + 0.2 = 0.2

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 01:18 
Заслуженный участник


02/08/11
7014
Gspace в сообщении #1629746 писал(а):
Тогда применимо к моей задаче можно ли решить так?
Да, можно, хотя чтобы строго это обосновать нужно понимать что такое обобщённые функции. А когда знаешь, то немножко глаз дёргается, видя такое беззастенчивое интегрирование по частям. Но можно, да.

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 02:18 


15/02/24
11
warlock66613

Спасибо вам огромное, что уделили мне время. Я постараюсь сформулировать свой последний вопрос, если вам несложно и остались силы и терпение, подскажите мне, пожалуйста.
Если я все правильно понял, то можно, опираясь на материал выше, прийти к заключению, что \int\limits_{-\infty}^{\infty} f(t) 1(t) \exp^{-qt} dt = \int\limits_{0}^{\infty} f(t) \exp^{-qt} dt , где f(t) - произвольная функция, q - определенное число, заранее неизвестное.
Тогда решение для первого интеграла будет следующее:
\int\limits_{-\infty}^{\infty} f(t) 1(t) \exp^ {-qt} \cdot dt = \begin{pmatrix} u = f(t)1(t) & du = \dot{f(t)}1(t)+f(t)\delta (t) \\ dv = \exp^{-qt} & v=-\frac{ 1 }{ q } \exp^{-qt} \end{pmatrix} = - $\frac{1}{q}$ f(t) 1(t) \cdot \exp^{-qt} \left.{}\right|_{-\infty }^{ \infty } + $\frac{1}{q}$ \int\limits_{-\infty}^{\infty} $\dot{f(t)}$ 1(t)+f(t)\delta (t) \exp^ {-qt} dt = $\frac{1}{q}$ \int\limits_{-\infty}^{\infty}\left\langle \dot{f(t)} 1(t)+f(t)\delta (t) \right\rangle \exp^ {-qt} dt
Решение для второго интеграла:
\int\limits_{0}^{\infty} f(t) \exp^ {-qt} dt = \begin{pmatrix} u = f(t) & du = \dot{f(t)} \\ dv = \exp^{-qt} & v=-\frac{ 1 }{ q } \exp^{-qt} \end{pmatrix} = - $\frac{1}{q}$ f(t) \cdot \exp^{-qt} \left.{}\right|_{0 }^{ \infty } + $\frac{1}{q}$ \int\limits_{0}^{\infty} $\dot{f(t)}$ \exp^ {-qt} dt = $\frac{1}{q}$ f(0) + $\frac{1}{q}$ \int\limits_{0}^{\infty} $\dot{f(t)}$ \exp^ {-qt} dt
И как мы видим, результаты, в конечном итоге, идентичны.

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 02:53 
Заслуженный участник


02/08/11
7014
Верно.

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 03:08 


15/02/24
11
warlock66613
Тогда можно заметить следующую закономерность.
Обозначим для первого интеграла u = f(t)1(t), dv = \exp^{-qt} dt, из полученного решения видно, что \int\limits_{-\infty}^{\infty} u $\cdot$ dv = $\frac{1}{q}$ \int\limits_{-\infty}^{\infty} $\dot{u}$ $\cdot$ dv

Однако для второго интеграла такую зависимость не получить: u = f(t), dv = \exp^{-qt} dt, в итоге имеем \int\limits_{0}^{\infty} u $\cdot$ dv = $\frac{1}{q}$ \int\limits_{0}^{\infty} $\dot{u}$ $\cdot$ dv + $\frac{1}{q}$ u(0)
Все ли правильно я сделал? Почему же зависимость для первого интеграла не повторяется во втором, хотя они идентичны?

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 09:54 
Заслуженный участник


02/08/11
7014
Потому что зависимость эта не носит общий характер и выполняется в общем случайно, только для некоторых $u$ и $v$.

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение16.02.2024, 19:41 
Аватара пользователя


18/10/21
80
Очень интересно, но я правильно понимаю, что функция Дирака ($\delta(t)$ из стартового сообщения) это ноль ?

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение17.02.2024, 15:26 


15/02/24
11
makxsiq
Почему вы решили, что это ноль? Функция Дирака равна бесконечности при t = 0

 Профиль  
                  
 
 Re: Несобственный интеграл от произведения функций
Сообщение17.02.2024, 22:58 
Аватара пользователя


18/10/21
80
Gspace в сообщении #1629929 писал(а):
makxsiq
Почему вы решили, что это ноль? Функция Дирака равна бесконечности при t = 0

Да, верно, правильнее будет сказать, что это плотность нуля.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: gris


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group