Это диофантово уравнение x^a +y^b = z^c, где a, b и c — положительные целые числа, показатели степени. Назову это уравнение уравнением Ферма — Каталана, потому что его решения имеют отношение как к Великой теореме Ферма, так и к гипотезе Каталана. Если a, b и c малы, ненулевые целые решения не особенно удивительны. К примеру, если все они равны 2, мы имеем уравнение Пифагора, которое, как известно со времен Евклида, имеет бесконечно много решений. Так что основной интерес представляют те случаи, когда показатели степени велики. Формально они являются «большими», когда s = 1/a + 1/b + 1/c меньше 1. Известно лишь десять больших решений уравнения Ферма — Каталана:
,
,
,
,
,
,
,
,
,
.
Первое из этих решений считается большим, потому что 1 = 1a для любого a и для a = 7 в том числе. Гипотеза Ферма — Каталана утверждает, что для больших s уравнение Ферма — Каталана имеет лишь конечное число целых взаимно простых решений. Основной результат доказали в 1997 г. Анри Дармон и Лоик Мерель: не существует решений, в которых c = 3, а a и b равны и больше 3. Больше почти ничего не известно.
Мною найдено 11 и 12 решения! Вопрос: "Где я могу зарегистрировать свои открытия или это малозначительный результат, не представляющий никакого интереса для математиков"?