Утречком поиграл в кубики. Наверное, решение задачи лежит в теории конечных групп. А я решил посмотреть, как это выглядит в натуре. Надеюсь,
Doctor Boom не станет прописывать мне успокоительное
Наспех накидал программку на PARI/GP. Пока для двумерного случая. Кубик кодирую числом от 0 до 15. От верхнего левого по часовой стрелке. Кубики собраны в множество. Беру первый, кручу-верчу и все получившиеся от поворотов из множества выкидываю. Беру второй и далее, пока не дойду до конца множества. Оставшиеся кубики символизируют классы фактормножества по похожести как отношению эквивалентности.
Вот результат:
[0, 1, 3, 5, 7, 15]То есть
n=2: k=6
|0 0| |0 0| |0 0| |0 1| |0 1| |1 1|
|0 0| |1 0| |1 1| |1 0| |1 1| |1 1|похоже
(code)
Код:
{n=2; n2=2^n; k=2^n2;
s=Set(vector( k,i,i-1));
i=1;
while( i<#s,
j=s[i]; ij=j;
for( jjj=1,3,
ij=ij\2+ij%2*8;
if(ij!=j,s=setminus(s,Set(ij)));
);
i++;
);
print(s);
}