2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 3, 4, 5, 6, 7
 
 Re: Что дала актуальная бесконечность математике?
Сообщение05.10.2023, 11:24 
Заслуженный участник
Аватара пользователя


16/07/14
9292
Цюрих
talash в сообщении #1612510 писал(а):
А здесь $\bar x$ бесконечная последовательность?
Да, т.е. функция $\mathbb N \to \mathbb R$.
talash в сообщении #1612510 писал(а):
И тоже есть предельный переход?
Именно предельного перехода нет ни здесь, ни в оригинальной формулировке.
Есть теорема: если $\bar \Delta$ - последовательность отрезков (т.е. функция $\mathbb N \to \text{множество отрезков}$), причем $\forall i: \bar \Delta(i + 1) \subseteq \bar \Detla(i)$, то $\exists x \forall i: x \in \Delta(i + 1)$.
talash в сообщении #1612510 писал(а):
Функция в п.1. возвращает точку в зависимости от аргумента n
Какая функция-то? В тексте вообще не упоминаются в явном виде никакие функции.
talash в сообщении #1612510 писал(а):
Сейчас удобно проверять свою логику с помощью AI
Это неудачная шутка или троллинг?

 Профиль  
                  
 
 Re: Что дала актуальная бесконечность математике?
Сообщение20.10.2023, 17:20 


01/09/14
614
mihaild в сообщении #1612528 писал(а):
talash в сообщении #1612510 писал(а):
Функция в п.1. возвращает точку в зависимости от аргумента n
Какая функция-то? В тексте вообще не упоминаются в явном виде никакие функции.

Вы же сами написали, что это функция:
mihaild в сообщении #1612528 писал(а):
talash в сообщении #1612510 писал(а):
А здесь $\bar x$ бесконечная последовательность?
Да, т.е. функция $\mathbb N \to \mathbb R$.


mihaild в сообщении #1612528 писал(а):
talash в сообщении #1612510 писал(а):
И тоже есть предельный переход?
Именно предельного перехода нет ни здесь, ни в оригинальной формулировке.

Стремление к нулю и получение точки подразумевает предельный переход. Про предельный переход в этой теореме также написал epros:
epros в сообщении #1608968 писал(а):
talash в сообщении #1608940 писал(а):
из отрезка мы получаем бесконечно малое - точку
В пределе получаем. Вы ведь, вроде, против пределов ничего не имели?


mihaild в сообщении #1612528 писал(а):
talash в сообщении #1612510 писал(а):
Сейчас удобно проверять свою логику с помощью AI
Это неудачная шутка или троллинг?

Это не шутка и не троллинг. Кажется естественным, что AI должен быть наиболее силён в проверке математических рассуждений потому что правила строгие и AI должен смочь однозначно судить прав ли человек или сделал ошибку.

-- 20.10.2023, 16:22 --

Подытожу текущее понимание теоремы Кантора.

Напомню, речь идёт про эту теорему:
Vladimir Pliassov в сообщении #1608035 писал(а):
Цитата:
1. Несчетность множества точек отрезка $[ 0,1 ]$
Множество $A$ называется несчетным, если оно неэквивалентно множеству натуральных чисел.

Теорема Кантора ... : Множество точек отрезка $[0,1]$ несчетно.

↓Предположим, что множество точек $[0,1]$ счетно: $x_1, x_2, \; \ldots, \;  x_n, \; \ldots \; .$ Разделим отрезок $[0,1]$ на $3$ равные части: $[0, \frac {1}{3}]; [\frac {1}{3}; \frac {2}{3}]; [\frac {2}{3}; 1]$, и выберем тот из отрезков, который не содержит $x_1$ ни внутри, ни на границе. Обозначим его через $\Delta_1$, т.е. $x_1$ не принадлежит $\Delta_1$. $\Delta_1$ также поделим на $3$ равные части и выберем ту часть, которая не содержит $x_2$ ни внутри, ни на границе. Обозначим эту часть $\Delta_2$, т.е. $x_2$ не принадлежит $\Delta_ 2$, и $\Delta_2\subset \Delta _1$. Продолжая эту процедуру, мы получим последовательность вложенных друг в друга отрезков $\Delta_1\supset \Delta_2\supset \ldots\supset \Delta_{n-1}\supset \Delta_n\supset \ldots \; .$ Причем длины этих отрезков стремятся к нулю и $\forall n \; x_n\notin \Delta_n$. В силу принципа вложенных отрезков существует точка $c\in \Delta_n$ для $\forall n$, причем $c\ne x_n \; \forall n$. А следовательно, точка $c$ в исходном списке точек отрезка отсутствует, т.е. точка $c$ оказалась незанумерованной. Это противоречие доказывает теорему. ↑

Вот конкретно, где я вижу ошибку в этом доказательстве. Здесь есть аргумент n, стремящийся к бесконечности, и два шага процедуры:
1. Выбор точки из множества в зависимости от аргумента n.
2. Построение системы вложенных отрезков в зависимости от выбранной точки.
Первый пункт можно обозначить функцией $f(n)$, которая возвращает точку из множества. С учётом второго пункта это будет сложная функция $g(f(n))$, функция $g$ возвращает длину отрезка. Совершив предельный переход, мы рассчитываем получить отрезок нулевой длины, то есть точку, которой нет в исходном множестве. Но предельный переход для этой сложной функции неопределён, потому что не определён предельный переход для функции $f(n)$.
Вывод: доказательство неверно.

 Профиль  
                  
 
 Re: Что дала актуальная бесконечность математике?
Сообщение20.10.2023, 17:31 
Заслуженный участник
Аватара пользователя


16/07/14
9292
Цюрих
talash в сообщении #1614099 писал(а):
Стремление к нулю и получение точки подразумевает предельный переход
Нет, не подразумевает.
talash в сообщении #1614099 писал(а):
Про предельный переход в этой теореме также написал epros
Это был жаргон. На самом деле никакого предела там нет, а есть обыкновенное пересечение семейства множеств.
talash в сообщении #1614099 писал(а):
Кажется естественным, что AI должен быть наиболее силён в проверке математических рассуждений потому что правила строгие и AI должен смочь однозначно судить прав ли человек или сделал ошибку
Может быть и кажется, но это совершенно неверно. Никогда не полагайтесь на ответы чатбота в тех местах, которые Вы не можете легко проверить сами. Говорю Вам как человек, получающий за разработку чатбота зарплату.

Вот конкретно, где я вижу ошибки в Вашем разборе.
talash в сообщении #1614099 писал(а):
Здесь есть аргумент n, стремящийся к бесконечности
Нету.
talash в сообщении #1614099 писал(а):
и два шага процедуры
Тоже нету.

 Профиль  
                  
 
 Re: Что дала актуальная бесконечность математике?
Сообщение20.10.2023, 19:38 
Заслуженный участник
Аватара пользователя


28/09/06
11036
talash в сообщении #1614099 писал(а):
Но предельный переход для этой сложной функции неопределён, потому что не определён предельный переход для функции $f(n)$.

Вообще-то $g=\frac{1}{3^n}$, так что предел при $n\to\infty$ очевиден, а Вы сейчас ерунду сказали.

(Оффтоп)

Или, скорее, Вы нам здесь просто намеренно мозги пудрите.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 94 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: vicvolf


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group