2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Вращающийся идеальный газ
Сообщение27.08.2023, 00:03 
Заслуженный участник
Аватара пользователя


04/09/14
5355
ФТИ им. Иоффе СПб
В теме про выравнивание температуры во вращающемся газе я написал
amon в сообщении #1606567 писал(а):
проще думать не о вращении, а о газе в неоднородном гравитационном поле
и, честно говоря, ждал каверзного вопроса. Таковой не последовал, поэтому задам его сам. При переходе в равномерно вращающуюся систему отсчета кроме центробежной возникает еще сила Кориолиса. И что, эта сила ни как не скажется на термодинамических свойствах вращающегося идеального газа?

-- 27.08.2023, 00:45 --

На всякий случай. Термодинамические свойства это давление, температура и плотность газа.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 02:59 


05/09/16
12238

(Оффтоп)

amon в сообщении #1606735 писал(а):
и, честно говоря, ждал каверзного вопроса.

Мне было стыдно спросить, поэтому внутри себя я решил, что газ внутри в итоге будет вращаться как твердое тело, так и надо рассматривать его, и тогда кориолиса нет, "гравитация" радиальная. Но на всякий случай всё что писал там от себя - только про однородное поле. :mrgreen:
Но тут явно что-то не так, отдельные молекулы-то будут летать прямолинейно-равномерно (в ИСО). И вообще тема с вращением газа во вращающемся цилиндре мутная вязкая. С лифтом Эйнштейна все ясно, более-менее. А тут -- нет.
Поскольку чего-то по существу не имею, одни сомнения, беру в офтоп.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 07:43 


17/10/16
5094
amon
С точки зрения феноменологической термодинамики все элементы газа во вращающейся СО в состоянии равновесия неподвижны, сила Кориолиса равна нулю, термодинамические параметры должны иметь такое же распределение, как в случае, если просто задать соответвтвующий радиальный градиент потенциала. Статистическая термодинамика не должна противоречить этому выводу. Процесс достижения равновесного состояния с учетом силы Кориолиса будет, конечно, другим, но само состояние - тем же самым. Распределение температуры будет равномерным, распределение давления и плотности имеет единственное равновесное решение, никаких касательных напряжений в газе не появится, напряженное состояние в точке по прежнему будет скаляром (давление), а не тензором. Не вижу, куда бы что могло "съехать".

Вероятно, в равновесии сила Кориолиса, действующая на каждую молекулу, в среднем равна нулю, учитывая равновероятность в распределении ее скорости по направлению. Этим можно объяснить, почему ее можно не учитывать именно при равновесии.

Ну и понятно, что раз "ждал каверзного вопроса", то не затем, чтобы ответить "ой, действительно, все пропало, это не работает". Ответ "это не имеет значения" уже был готов.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 10:39 
Заслуженный участник
Аватара пользователя


04/09/14
5355
ФТИ им. Иоффе СПб
sergey zhukov в сообщении #1606744 писал(а):
Ну и понятно, что раз "ждал каверзного вопроса", то не затем, чтобы ответить "ой, действительно, все пропало, это не работает". Ответ "это не имеет значения" уже был готов.
И были заготовлены некие математические выкладки, поскольку философских рассуждений на физические темы я не люблю. Какие?

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 13:09 


17/10/16
5094
amon
Поставим задачу так: газ достиг равновесного состояния в радиальном силовом поле. Теперь "включаем" силу Кориолиса. Движение отдельных молекул, очевидно, изменится, станет криволинейным. Как изменятся при этом термодинамические параметры газа? Ответ - никак. Почему?

Думаю, что поскольку сила Кориолиса не производит работы, внутренняя энергия газа после ее "включения" так и будет оставаться постоянной. Поэтому температура, как мера средней энергии молекул в выделенном объеме, останется неизменной. Усреднение силы Кориолиса по всем молекулам в выделенном объеме дает ноль, т.е. никакого выделенного направления движения молекул в пространстве она не задает, если его не было до ее "включения" (а его не было). Отсюда и давление, как мера передаваемого на единицу площади молекулами импульса в единицу времени, останется неизменным и одинаковым на все стенки выделенного объема. Плотность же есть просто функция давления, объема и температуры.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 14:03 
Заслуженный участник
Аватара пользователя


04/09/14
5355
ФТИ им. Иоффе СПб
sergey zhukov, а на формулах эти философские рассуждения подтвердить?

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 14:35 


27/08/16
10916
Если без статсуммы, то сила Кориолиса не влияет на мгновенное столкновение молекул газа и перераспределение импульсов. Свободно летящая между столкновениями молекула под действием силы Кориолиса поворачивает своё направление движения без изменения модуля скорости, скорость поворота угла зависит только от модуля проекции скорости в плоскости вращения. Симметричное трёхмерное распределение Максвелла при таком вращении переходит в себя. Поэтому оно устанавливается точно такое же, как и в невращающемся газе.

А вот неравновесные процессы при наличии вращения или магнитного поля могут протекать иначе.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 14:46 


17/10/16
5094
realeugene

(Оффтоп)

Все же философский подход как-то притягательнее...

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 15:53 
Заслуженный участник
Аватара пользователя


04/09/14
5355
ФТИ им. Иоффе СПб
realeugene в сообщении #1606817 писал(а):
Симметричное трёхмерное распределение Максвелла при таком вращении переходит в себя.
Это и надо показать. Функция Лагранжа с учетом Кориолиса содержит линейный по скорости член (функция Гамильтона - линейный по импульсу), которых в распределении Максвелла нет.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 16:57 


27/08/16
10916
Кориолисово ускорение перпендикулярно скорости. Без столкновений распределение по импульсам просто вращается цилиндрами вокруг оси, заданной осью вращения системы отсчёта. Но в этих цилиндрических координатах распределение Максвелла не зависит от угла, и в силу этой симметрии при вращении ничего не меняется.

ИМХО задача не олимпиадная, так как в олимпиадных задачах требуется найти решение при помощи нестрогой догадки, а тут требуется придумать упрощённое доказательство, но уровень допустимой нестрогости доказательства не определён.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 17:11 
Заслуженный участник
Аватара пользователя


04/09/14
5355
ФТИ им. Иоффе СПб
realeugene в сообщении #1606825 писал(а):
тут требуется придумать упрощённое доказательство, но уровень допустимой нестрогости доказательства не определён.
Про лису и виноград помните? Есть вполне строгое на физическом уровне (а статистическая термодинамика живет только на этом уровне) доказательство.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение27.08.2023, 22:40 


31/07/14
740
Я понял, но не врубился.
amon в сообщении #1606824 писал(а):
Функция Лагранжа с учетом Кориолиса содержит линейный по скорости член

Так этим вроде всё и сказано?

Речь о первом члене в

${\displaystyle {\frac {\partial L}{\partial \mathbf {r} }}=m[\mathbf {v} \mathbf {\Omega } ]+m[[\mathbf {\Omega } \mathbf {r} ]\mathbf {\Omega } ]-m{\frac {d\mathbf {V} }{dt}}-{\frac {\partial U}{\partial \mathbf {r} }},}$

а он в среднем ноль, поскольку среда как целое никуда не движется, $\overline {\mathbf v}= 0.$

Т.е. в среднем никакой дополнительной силы нет.

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение28.08.2023, 19:38 
Заслуженный участник
Аватара пользователя


04/09/14
5355
ФТИ им. Иоффе СПб
chislo_avogadro в сообщении #1606862 писал(а):
а он в среднем ноль, поскольку среда как целое никуда не движется, $\overline {\mathbf v}= 0.$ Т.е. в среднем никакой дополнительной силы нет.
А если бы, чисто гипотетически, функция Лагранжа содержала бы кубический по скорости член, который тоже в среднем ноль, то что, он тоже бы ни на чем не сказался?

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение29.08.2023, 01:11 
Заслуженный участник
Аватара пользователя


04/09/14
5355
ФТИ им. Иоффе СПб
Как-то так сложилось, что те задачи, которые я складывал в олимпиадный раздел я же и решал. Не могу нарушить традицию (C).
Функция Лагража частицы во вращающейся системе координат имеет вид (ЛЛ1), формула (36.9)
$$L=\frac{m\mathbf{v}^2}{2}+\mathbf{v}\mathbf{A}(\mathbf{r})+\frac{m}{2}\mathbf{A}^2,\,\mathbf{A}=\mathbf{\Omega}\times\mathbf{r}$$
Из $p=\frac{\partial L }{\partial v}=v+A$ и $H=\mathbf{p}\dot{\mathbf{r}}-L$ получим
$$H=\frac{(\mathbf{p}-\mathbf{A})^2}{2m}-\frac{m}{2}\mathbf{A}^2.$$
Подставим это в стат. сумму для газа
$$Z=\int\prod_id\mathbf{r}_i\prod_id\mathbf{p}_ie^{\frac{-\sum_iH(\mathbf{p}_i,\mathbf{r}_i)}{kT}}$$
Этот интеграл распадается на произведение интегралов вида
$$\int d\mathbf{r}_i\int d\mathbf{p}_i\exp\left(-\left(\frac{(\mathbf{p}_i-\mathbf{A}^2(\mathbf{r}_i))}{2mkT}-\frac{m}{2kT}\mathbf{A}^2(\mathbf{r}_i)\right)\right)$$
В интеграле по $p$ сдвинем переменную $p\to p-A.$ получим стандартную стат. сумму для газа с гамильтонианом
$$H=\frac{\mathbf{p}^2}{2m}-\frac{m}{2}\mathbf{A}^2.$$
То есть, в термодинамике от силы Кориолиса ничего не остается.

Забавный вопрос -- что будет с распределением Максвелла. Распределение по импульсам сдвинется:
$$n(\mathbf{p})=C\int d\mathbf{r} \exp\left(-\left(\frac{(\mathbf{p}-\mathbf{A(\mathbf{r}}))^2}{2mkT}-\frac{m}{2kT}\mathbf{A(\mathbf{r})}^2\right)\right).$$
Интегрирование ведется по внутренности цилиндра, $C$ -- нормировочная константа. Однако, если сосчитать распределение скоростей, то оно окажется максвелловским, поскольку для скоростей
$$E(\mathbf{v},\mathbf{r})=\frac{m\mathbf{v}^2}{2}-\frac{m}{2}\mathbf{A}^2.$$

 Профиль  
                  
 
 Re: Вращающийся идеальный газ
Сообщение30.08.2023, 12:38 


27/08/16
10916
Нормальный вывод, как по учебнику, здорово. Так а в чём состоит его олимпиадность?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: dovlato


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group