2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1 ... 21, 22, 23, 24, 25, 26, 27 ... 34  След.
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 01:09 


29/08/09
691
Rak so dna в сообщении #1604660 писал(а):
natalya_1 в сообщении #1604654 писал(а):
$f_1(x)=f(x)+2f(k)$
Определитесь со знаком перед $2f(k).$ Или это, как обычно у вас, ни на что не влияет?
$f_1(x)=f(x)-2f(k)$
Rak so dna в сообщении #1604660 писал(а):

natalya_1 в сообщении #1604654 писал(а):
Если существуют $a,$ $a_1,$ $a_2$, то и $a',~a_1',~a_2''$ существуют. Мы использовали только рациональные величины при движении графика
Причём тут рациональность? Попробуйте немного подумать над предыдущим сообщением.

natalya_1 в сообщении #1604654 писал(а):
Нет он не мог оказаться над $y=f(a)$, потому что у нас $k>h$
Как это вообще что-то поясняет?

Специально поднимала график на такую величину, чтобы эти точки были.

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 01:26 
Заслуженный участник
Аватара пользователя


26/02/14
562
so dna
natalya_1 в сообщении #1602681 писал(а):
В результате этих двух последовательных параллельных переносов
получаем симметрию относительно $\frac{c}{2}$:

точка $b$ симметрична точке $a'$ ,
точка $b_1$ симметрична точке $a_2''$
точка $b_2$ симметрична точке $a_1'$
точка $a$ симметрична точке$b'$
точка $a_1$ симметрична точке $b_2'$
точка $a_2$ симметрична точке $b_2'$
точка $h_1$ симметрична точке $h$
А я вот возьму и просто введу новые параметры $a',a_2'',a_1',b',b_2',b_2'(?),h_1$ как:

$b+a'=b_1+a_2''=b_2+a_1'=a+b'=a_1+b_2'=a_2+b_2'(?)=h+h_1=c$

Можете "на пальцах" объяснить: В чём принципиальная разница между моими обозначениями и всеми вашими графикодвижениями?

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 02:01 


29/08/09
691
Rak so dna в сообщении #1604668 писал(а):
natalya_1 в сообщении #1602681 писал(а):
В результате этих двух последовательных параллельных переносов
получаем симметрию относительно $\frac{c}{2}$:

точка $b$ симметрична точке $a'$ ,
точка $b_1$ симметрична точке $a_2''$
точка $b_2$ симметрична точке $a_1'$
точка $a$ симметрична точке$b'$
точка $a_1$ симметрична точке $b_2'$
точка $a_2$ симметрична точке $b_2'$
точка $h_1$ симметрична точке $h$
А я вот возьму и просто введу новые параметры $a',a_2'',a_1',b',b_2',b_2'(?),h_1$ как:

$b+a'=b_1+a_2''=b_2+a_1'=a+b'=a_1+b_2'=a_2+b_2'(?)=h+h_1=c$

Можете "на пальцах" объяснить: В чём принципиальная разница между моими обозначениями и всеми вашими графикодвижениями?

Я пришла к этому так, как я пришла. Я так вижу числа. Мне важно было, что $f_2(a')=f(a) $итд

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 11:25 
Заслуженный участник
Аватара пользователя


26/02/14
562
so dna
Rak so dna в сообщении #1604668 писал(а):
А я вот возьму и просто введу новые параметры $a',a_2'',a_1',b',b_2',b_2'(?),h_1$ как:

$b+a'=b_1+a_2''=b_2+a_1'=a+b'=a_1+b_2'=a_2+b_2'(?)=h+h_1=c$

Можете "на пальцах" объяснить: В чём принципиальная разница между моими обозначениями и всеми вашими графикодвижениями?
Вы понимаете, что я всё это пишу не просто так? Если мои действия равносильны вашим, то вы ничего содержательного не докажите, поскольку в этом случае параметры $a',a_2'',a_1',b',b_2',b_2'(?),h_1$ — это просто мусор, не несущий никакой информации. И их использование, конечно же, ничего не даст, кроме бесконечных опечаток, ни на что не влияющих ошибок, куч всяких штрихов, индексов и прочей шелухи.


natalya_1 в сообщении #1602681 писал(а):
$b_2'-b_1'=b_2'-(b_1''-\frac{c(cd-3p)}{cd-p})=(a_2'-a_1')+\frac{c(cd-3p)}{cd-p}$
Последнее верно, только если: $b_2'-b_1''=a_2'-a_1'.$ Почему это равенство верно?

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 14:23 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
Там чуть дальше еще сделан вывод, что $a_1+b_2$ и $a_2+b_1$ рациональные числа. Странно: $a_1, a_2$ и $b_1, b_2$ суть решения уравнений $f(t)=f(a)$ и $f(t)=f(b)$, отличные от $a$ и $b$, соответственно. Но в корни этих уравнений входят квадратичные иррациональности, причем от разных выражений:
$c^6+(2b+2a)c^5+(-(3b^2)-5a^2)c^4-4b^3c^3+(4b^4-2ab^3+3a^2b^2-8a^3b-a^4)c^2+$
$+(6a^2b^3+6a^3b^2+6a^4b+6a^5)c-3a^2b^4-6a^4b^2-3a^6$
и
$c^6+(2b+2a)c^5+(-(5b^2)-3a^2)c^4-4a^3c^3+(-b^4-8ab^3+3a^2b^2-2a^3b+4a^4)c^2+$
$+(6b^5+6ab^4+6a^2b^3+6a^3b^2)c-3b^6-6a^2b^4-3a^4b^2$.
Неплохо бы пояснить, как они могут сократиться или свернуться.

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 14:38 


13/05/16
362
Москва
пианист в сообщении #1604733 писал(а):
Там чуть дальше еще сделан вывод, что $a_1+b_2$ и $a_2+b_1$ рациональные числа

Этот вывод сделан на основании этого равенства. Там дальше объяснения идут.
natalya_1 в сообщении #1602681 писал(а):
6.1.1 $a_1+b_2=c-\frac{d}{2}$ (4.1.3)

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 14:51 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
Вижу.
Получается, эти корни должны как-то сокращаться/сворачиваться. Вот же и интересуюсь, как.

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 15:05 
Заслуженный участник
Аватара пользователя


26/02/14
562
so dna
пианист в сообщении #1604733 писал(а):
Там чуть дальше еще сделан вывод, что $a_1+b_2$ и $a_2+b_1$ рациональные числа.
Для этого необходимо, что бы выполнялось
Rak so dna в сообщении #1604695 писал(а):
только если: $b_2'-b_1''=a_2'-a_1'.$
Я не вижу, почему это должно быть верно. До этого всё (вроде бы) верно, хотя не уверен, может что и не заметил.

Но, опять же, все прочие равенства получаются тупо из

$b+a'=b_1+a_2''=b_2+a_1'=a+b'=a_1+b_2'=a_2+b_1''=h+h_1=c,$

и

$b_1''-b_1'=a_2''-a_2'=h_1-h$

поэтому, в доказательстве рациональности $a_1,~a_2,~b_1,~b_2$ гарантированно есть ошибка.

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение10.08.2023, 19:29 


29/08/09
691
Rak so dna в сообщении #1604695 писал(а):


natalya_1 в сообщении #1602681 писал(а):
$b_2'-b_1'=b_2'-(b_1''-\frac{c(cd-3p)}{cd-p})=(a_2'-a_1')+\frac{c(cd-3p)}{cd-p}$
Последнее верно, только если: $b_2'-b_1''=a_2'-a_1'.$ Почему это равенство верно?
оно не верно, это ошибка, вы правы, как всегда. попробую по другому. Это надо доказывать.
$b-b'=(b_2'-b_2)+(b_1'-b_1)$ -это верно.
Мне надо доказать, что $b_2'-b_2=b_1'-b_1$, ради этого были все движения графиков...

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение11.08.2023, 00:17 


29/08/09
691
Вот это правильно?
$f_1(x)=f(x)-2f(k)$
$f(k)=\frac{c^2d}{3(cd-p)}(\frac{(c^2d)^2}{9(cd-p)}-\frac{c^4d^2}{3(cd-p)}+c^2p)=\frac{c^4d(9p(cd-p)-2c^2d^2)}{27(cd-p)^2}$
$f_1(x)=\frac{27x^3(cd-p)^3-27c^2dx^2(cd-p)^2+27c^2px(cd-p)^2-2c^4d(9p(cd-p)-2c^2d^2)}{27(cd-p)^2}$.
$f_2(x)=f_1(x-(k-h))=f_1(x-\frac{c^2d-3cp}{3(cd-p)})$
$f_2(x)=\frac{27(x-\frac{c^2d-3cp}{3(cd-p)})^3(cd-p)^3-27c^2d(x-\frac{c^2d-3cp}{3(cd-p)})^2(cd-p)^2+27c^2p(x-\frac{c^2d-3cp}{3(cd-p)})(cd-p)^2-2c^4d(9p(cd-p)-2c^2d^2)}{27(cd-p)^2}$, $k-h=t$
$a=c-b'$, $b=c-a_2''$, следовательно, $a_2''$ и $b'$ - целые числа,
$b'+a_2''=2c-(a+b)$
$f_2(b')=-f_2(a_2'')$, $$следовательно,
$27((a_2''-t)^3+(b'-t)^3)(cd-p)^3-27c^2d((a_2''-t)^2+(b'-t)^2)(cd-p)^2+27c^2p(a+b-2t)(cd-p)^2-4c^4d(9p(cd-p)-2c^2d^2)=0$,
следовательно,
$
\frac{a_2''^3+b'^3}{c^2}$ -целое число, $\frac{(a_2''+b')((a_2''+b')^2-3a_2''b')}{c^2}$-целое число,
$a_2''b'$ должно иметь общий делитель с $c$,
$(c-a)(c-b)$ должно иметь общий делитель с $c$, что невозможно, поскольку $a$, $b$, $c$ -взаимно простые числа

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение11.08.2023, 10:42 
Заслуженный участник
Аватара пользователя


26/02/14
562
so dna
natalya_1 в сообщении #1604786 писал(а):
$27((a_2''-t)^3+(b'-t)^3)(cd-p)^3-27c^2d((a_2''-t)^2+(b'-t)^2)(cd-p)^2+27c^2p(a+b-2t)(cd-p)^2-4c^4d(9p(cd-p)-2c^2d^2)=0$
Здесь опечатки.

natalya_1 в сообщении #1604786 писал(а):
$\frac{a_2''^3+b'^3}{c^2}$ -целое число
Почему вы сделали такой вывод?

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение11.08.2023, 16:15 


29/08/09
691
Rak so dna в сообщении #1604801 писал(а):
natalya_1 в сообщении #1604786 писал(а):
$27((a_2''-t)^3+(b'-t)^3)(cd-p)^3-27c^2d((a_2''-t)^2+(b'-t)^2)(cd-p)^2+27c^2p(a+b-2t)(cd-p)^2-4c^4d(9p(cd-p)-2c^2d^2)=0$
Здесь опечатки.

natalya_1 в сообщении #1604786 писал(а):
$\frac{a_2''^3+b'^3}{c^2}$ -целое число
Почему вы сделали такой вывод?

Потому что $\frac{27((a_2''-t)^3+(b'-t)^3)(cd-p)^3}{c^2}-$ -целое число, $t=\frac{c(cd-3p)}{3(cd-p)}$
$\frac{(a_2''+b'-2t)((a_2''-t)^2-(a_2''-t)(b'-t)+(b'-t)^2)(cd-p)^3}{c^2}$ -целое число,
$\frac{\frac{3(2c-(a+b))(cd-p)-2c(cd-3p))}{3(cd-p)}(\frac{(3(2c-(a+b))(cd-p)-2c(cd-3p))^2-(3(a_2''(cd-p)-c(cd-3p))(3b'(cd-p)-c(cd-3p))}{9(cd-p)^2})27(cd-p)^3}{c^2}$-целое число,
$a_2''b'$ должно иметь общий делитель с $(a+b)$$c$),
$(c-a)(c-b)$ должно иметь общий делитель с $(a+b)$$c$),
Но это невозможно, потому что $a$, $b$, $c$ -взаимно простые числа.

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение11.08.2023, 21:26 


06/07/13
91
Преобразования
Цитата:
[$f_1(x)=f(x)-2f(k)$]
[$f(k)=\frac{c^2d}{3(cd-p)}(\frac{(c^2d)^2}{9(cd-p)}-\frac{c^4d^2}{3(cd-p)}+c^2p)=\frac{c^4d(9p(cd-p)-2c^2d^2)}{27(cd-p)^2}$]
[$f_1(x)=\frac{27x^3(cd-p)^3-27c^2dx^2(cd-p)^2+27c^2px(cd-p)^2-2c^4d(9p(cd-p)-2c^2d^2)}{27(cd-p)^2}$].
[$f_2(x)=f_1(x-(k-h))=f_1(x-\frac{c^2d-3cp}{3(cd-p)})$]
переводят исходный многочлен
$$f(x) =( cd - p)x^3 - c^2dx^2 + c^2px $$
в многочлен
$$ f_2(x)=(c - x) x(c^2 d + p x - c (2 p + d x)) $$
с корнями $f_2(x)=0\,\,\to$ $0;\, h_1=c-h;\,c$
или что то же самое
$$f_2(x)= - f(c-x)$$
Проверяется какой-нибудь матпрограммой.
Поэтому корни уравнения $f_2(x)=A$ или набор $b'_i $ будут симметричны набору корней $f(x) = -A$ или набору $a_i$ относительно точки $x=c/2$.
Аналогично для набора $b_i$ и $a'_i$.
Но соотношение
Цитата:
[$f_2(b')=-f_2(a_2'')$]
это то же самое, что и исходное - с чего началась тема,
$$f_2(b')=-f_2(a_2'')\,\,\to\,\, -f(c-a)=+f(c-b)$$
так как $c-a$, $c-b$ - целые числа, то переопределяя $c-a=a''$, $c-b=b''$ , получаем
$$ f(a'')=-f(b'')$$
Поэтому заявление, что отношение:
Цитата:
[$ \frac{a_2''^3+b'^3}{c^2}$] -целое число,
ниоткуда не следует.

Если есть симметрия между штрихованными и нештрихованными постоянными, то между $a_i, \,b_i$ никакой симмтрии нет. Она бы была, если бы точка перегиба лежала на оси OX или $k=h=c/2$

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение11.08.2023, 21:34 


29/08/09
691
Onoochin в сообщении #1604898 писал(а):

Поэтому заявление, что отношение:
Цитата:
[$ \frac{a_2''^3+b'^3}{c^2}$] -целое число,
ниоткуда не следует.

Если есть симметрия между штрихованными и нештрихованными постоянными, то между $a_i, \,b_i$ никакой симмтрии нет. Она бы была, если бы точка перегиба лежала на оси OX или $k=h=c/2$

Относительно симметрии этих конкретных точек уже всё проверено.

-- Пт авг 11, 2023 22:41:06 --

Onoochin в сообщении #1604898 писал(а):

или что то же самое
$$f_2(x)= - f(c-x)$$
Проверяется какой-нибудь матпрограммой.
Это не то же самое

 Профиль  
                  
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение12.08.2023, 01:22 


29/08/09
691
Onoochin в сообщении #1604898 писал(а):

так как $c-a$, $c-b$ - целые числа, то переопределяя $c-a=a''$, $c-b=b''$ , получаем
$$ f(a'')=-f(b'')$$
Поэтому заявление, что отношение:
Цитата:
[$ \frac{a_2''^3+b'^3}{c^2}$] -целое число,
ниоткуда не следует.

Здесь у вас ошибка: $c-a=b'$, $c-b=a_2''$

-- Сб авг 12, 2023 03:16:13 --

Onoochin в сообщении #1604898 писал(а):

Поэтому заявление, что отношение:
Цитата:
[$ \frac{a_2''^3+b'^3}{c^2}$] -целое число,
ниоткуда не следует.

Откуда оно следует, написано в сообщении #1604830


natalya_1 в сообщении #1604830 писал(а):
]
$\frac{27((a_2''-t)^3+(b'-t)^3)(cd-p)^3}{c^2}-$ -целое число, $t=\frac{c(cd-3p)}{3(cd-p)}$
$\frac{(a_2''+b'-2t)((a_2''-t)^2-(a_2''-t)(b'-t)+(b'-t)^2)(cd-p)^3}{c^2}$ -целое число,
$\frac{\frac{3(2c-(a+b))(cd-p)-2c(cd-3p))}{3(cd-p)}(\frac{(3(2c-(a+b))(cd-p)-2c(cd-3p))^2-(3(a_2''(cd-p)-c(cd-3p))(3b'(cd-p)-c(cd-3p))}{9(cd-p)^2})27(cd-p)^3}{c^2}$-целое число,
$a_2''b'$ должно иметь общий делитель с $(a+b)$$c$),
$(c-a)(c-b)$ должно иметь общий делитель с $(a+b)$$c$),
Но это невозможно, потому что $a$, $b$, $c$ -взаимно простые числа.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 508 ]  На страницу Пред.  1 ... 21, 22, 23, 24, 25, 26, 27 ... 34  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: vekos


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group