GeenПонятий «много», терминов «мало». Если не все, то большое количество терминов используются по-разному в различных задачах: «точка», «прямая», «линия», «многоугольник», «функция», «формула», «алгоритм», «решение», «найти решение»…
Понятия, соответствующие терминам, определяются аксиоматикой теории, в которой они используются, а критерий правильности – в корректности (непротиворечивости) этой теории. Не вытекающие из этого принципа полномочия судить (о чем-либо, в частности, правильности, полезности…) должны быть где-то регламентированы, а механизмы исполнения (учета) результатов суждения – обеспечены.
Понятие функции как отношения определять не буду. «Функционал, оператор, преобразование…» - термины, используемые для функций и придания им (функциям) некоторой подкраски (запаха, вкуса, тумана, привнесения элементов мистики, источника ужаса…).
"Простой народ" привык использовать термин "оператор" для обозначения функций
, термины «случайная величина», "случайная функция" (в том числе «случайный оператор») - в рамках конструкции вероятностного пространства.
Возможен (допустим в решаемой задаче) вариант определения:
РРП (оператор) – функция
,удовлетворяющая свойствам:
– биекция по при любых ;
– линейна по при любых ;
Для любого существует случайный вектор с распределением на (вер. мера на борелевской алгебре…), такой, что - случайный вектор, равномерно распределенный на
Другой вариант (близкий по смыслу к предыдущему) определения РРП можно дать в терминах условных распределений значения (выхода)
при задании величин
(на входе).
-- 04.08.2023, 06:24 --Евгений МашеровПо поводу координат
я выше уточнил, что это сферические на единичной сфере.
Термин нормализация (там в кавычках) взят из приложений, где в таких задачах компоненты результирующего вектора
обрабатываются согласованным с сигналом фильтром, на выходе которого аддитивная помеха аппроксимируется нормально распределенной СВ. Есть системы обработки, в которых
.