Если мы знаем, что мы не можем никак вычислить число, можем ли мы его выбрать?
Считайте слово "выбрать" просто жаргоном. Смысл фразы "выберем произвольно
" просто в том, что в следующих после этой фразы рассуждениях
может быть любым числом из отрезка
, как вычислимым, так и невычислимым. Если всё это переводить на полностью строгий формальный математический язык, то эту фразу со словом "выберем" нужно будет просто убрать, а к следующим после неё утверждениям дописать вначале что-то вроде "
".
Вот есть два невычислимых вещественных числа
и
. Как для них выглядит операция сравнения, кто из них больше?
Зависит от того, каким определением вещественных чисел (и операций над ними) вы пользуетесь. В большинстве случаев можно пользоваться аксиоматическим определением. Есть система аксиом вещественных чисел, и в этих аксиомах постулируется, что есть такая операция сравнения. Конечно, это не значит, что должен существовать какой-то алгоритм для этой операции. Это просто значок, свойства которого отражены в аксиомах.
Вместо аксиоматического подхода можно пользоваться определением вещественных чисел по Дедекинду, например. Там даётся определение сравнения двух вещественных чисел, смотрите начало учебника Фихтенгольца "Курс дифференциального и интегрального исчисления". Но наличие определения не означает наличие алгоритма, позволяющего сравнить два числа за конечное время. Чтобы говорить про алгоритм, нужно иметь вначале какую-нибудь конечную запись сравниваемых чисел, которая будет этому алгоритму подаваться на вход; но если мы просто обозначили их через
и
, нам неважно, есть у них вообще такая конечная запись или нет.