2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 New Year 2023. No.2
Сообщение12.01.2023, 15:43 


01/08/19
107
Let $B_n^k$ be the coefficients in the polynomial expansion $\left(1+x+x^2\right)^n=\sum_{k=0}^{2n}B_n^k x^k.$ Prove that for all prime number $p$, $s<p, r<p$ hold:
$$B_{mp+r}^{lp+s}\equiv \left(B_m^l\cdot B_r^s+B_m^{l-1}\cdot B_r^{s+p}\right)\pmod p.$$

 Профиль  
                  
 
 Re: New Year 2023. No.2
Сообщение24.07.2023, 09:01 


01/08/19
107
This is one old Problem from Kvant ( No 4 from 1972. ). I think it is useful to prove first: $$B_n^k=B_n^{2n-k}.$$

 Профиль  
                  
 
 Re: New Year 2023. No.2
Сообщение02.08.2023, 12:25 


01/08/19
107
My solution:
We use two facts:
$$X^n-Y^n=(X-Y)\cdot (X^{n-1}+X^{n-2}\cdot Y+...+X\cdot Y^{n-2}+X^{n-1}),$$if $m$ and $n$ are relatively prime numbers then $n\mid \binom{n}{m}.$
Now, it's obiviously
$$p\mid (X+Y)^p-(X^p+Y^p),$$so it's
$$p\mid \left((1+x)+x^2\right)^p-\left((1+x)^p+x^{2p}\right).$$But, $p\mid \sum_{k=2}^{p-1} \binom{p}{k} x^k$ so we can write
$$p\mid (1+x+x^2)^p-(1+x^p+x^{2p}).$$We define
$$P(x)=(1+x+x^2)^{mp+r}-(1+x+x^2)^r\cdot (1+x^p+x^{2p})^n$$$$=(1+x+x^2)^r\cdot \left[(1+x+x^2)^{mp}-(1+x^p+x^{2p})^m \right]$$$$=(1+x+x^2)^r\cdot \left[(1+x+x^2)^p-(1+x^p+x^{2p})\right]\cdot\left[(1+x+x^2)^{p(n-1)}+\cdots+(1+x^p+x^{2p})^{n-1}\right]$$$$\Rightarrow p\mid P(x).$$Now we look at the coefficient with $x^{lp+s}$ in the development of the expression:
1) $B_{mp+r}^{lp+s}$ is coefficient in $(1+x+x^2)^{mp+r};$
2) $$(1+x+x^2)^r\cdot (1+x^p+x^{2p})^n=(1+B_r^1 x+B_r^2 x^2+\cdots+\boxed{B_r^sx^s}+\cdots+\boxed{B_r^{s+p} x^{s+p}}+
\cdots+x^{2r})$$
$$\cdot(1+B_m^1 x^p+B_m^2 x^{2p}+\cdots+\boxed{B_m^{l-1}x^{(l-1)p}}+\boxed{B_m^lx^{lp}}+\cdots+x^{2pm})$$
By multiplication marked expression give the coefficient with $x^{lp+s}$ and it is $B_m^l\cdot B_r^s+B_m^{l-1}\cdot B_r^{s+p}$$\blacksquare$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group