2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Существование тензорного произведения
Сообщение06.05.2023, 18:03 


23/04/20
26
Добрый день. В одном тексте было дано определение тензорного произведения векторных пространств через универсальное свойство. У доказательства существования было написано, что без ограничения общности (как легко видеть :-) ) достаточно построить тензорное произведение для векторных пространств функций на произвольных множествах со значениями в поле. Вот только я как-то не вижу, почему мы этим не ограничиваем общность.
Вроде всё было бы ок, если бы мы для произвольного векторного пространства $V$ над полем $K$ нашли изоморфное ему пространство функций определённых на каком-то множестве $X$ со значениями в $K$. Если $V$ не является конечномерным пространством, то как найти соответствующее пространство функций, я не знаю. Не подскажите пожалуйста, как это сделать?

Наверное можно использовать тот факт, что два векторных пространств изоморфны, тогда и только тогда, когда их базисы равномощны. Вопрос тогда такой: Как найти множество $X$ такое, что базис пространства функций на $X$ со значениями в $K$, будет иметь одинаковую мощность как базис заданного линейного пространства $V$?

 Профиль  
                  
 
 Re: Существование тензорного произведения
Сообщение06.05.2023, 18:57 
Заслуженный участник
Аватара пользователя


03/06/08
2360
МО
UmnyjDurak в сообщении #1592771 писал(а):
как найти соответствующее пространство функций

Функции на двойственном пространстве?

 Профиль  
                  
 
 Re: Существование тензорного произведения
Сообщение06.05.2023, 21:47 
Заслуженный участник


13/12/05
4645
пианист в сообщении #1592775 писал(а):
достаточно построить тензорное произведение для векторных пространств функций на произвольных множествах со значениями в поле

Так, наверное там говориться о функциях, принимающих конечное число ненулевых значений. Тогда $X$ - это базис Гамеля данного векторного пространства.

 Профиль  
                  
 
 Re: Существование тензорного произведения
Сообщение06.05.2023, 22:15 


23/04/20
26
пианист
Разве это будет работать для произвольных (не обязательно гильбертовых, к примеру) бесконечномерных пространств?

-- 06.05.2023, 20:18 --

Padawan
Посмотрел ещё раз - функции в тексте произвольные. Стандартное доказательство существования вроде проводится и правда с помощью функций принимающих ненулевое значение только на конечном подмножестве. Скорее мне просто интересно, можно ли такой изоморфизм и вправду найти...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Divergence


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group