Я посчитал радиус сходимости по формуле Даламбера и получил, что предела (значение которого должно давать радиус) не существует. Как это нужно трактовать?
Вам уважаемый нужно перейти в поле комплексных чисел (правда вот непонятно на каком вы курсе - похоже на первом а это проблема). Там развита в высшей степени теория аналитических функций. В этом поле эту Рациональную функцию можно представить в виде суммы двух простых рациональных функций
. А далее из общей теории известна, что если функция аналитическая (представляется в виде ряда тейлора)в какой-то малой круговой окрестности точки
, то она остается и такой вплоть до круга на которой возникает особенность. Применяя к нашим баранам у нас особенности(полюсов)
. Ну и соответственно радиус сходимости в любой точке
на действительной оси - это расстояние до этих
. И лучше наверное критерий адамара применять
https://clck.ru/33V3Qv . Можно и Даламбера, но нужно привести в правильную, форму - повыкидывать из ряда нечетные нули, ибо теорема выполняется при условии существования предела - а если предела не существует (как в вашем исходном построении), может быть что угодно