Немного покопался и понял, что нужно начать с более простых вещей. Посмотрел Сасскинда.
Сасскинд приводит самый простой пример: частицу со спином, который при измерении принимает всегда только два значения. Скажем
и
. Это значит, что пространство состояний этой частицы двумерно (имеется только два ортогональных состояния), и любое произвольное состояние описывается двумерным единичным вектором.
Любое состояние - это вектор. Чтобы выразить произвольный вектор состояния системы, нужно определить базис (базисные состояния, т.е. базисные векторы ортогональных состояний). Этот базис - вещь произвольная, но важно, что таких базисных состояний в нашем случае всегда два (двумерное пространство состояний). Любое произвольное состояние будет вектором, выраженном в этом базисе.
Процесс измерения квантовых свойств частицы всегда одновременно так же и процесс определения базиса измерения. Причем, если мы измеряем только базисные состояния, то базис остается без изменения, а результат измерения получается совершенно точный. Попытка же измерить какое-либо состояние, отличное от базисного, приводит к смене базиса, а результат измерения становится случайным.
Скажем, для нашей частицы со спином есть два ортогональных базисных состояния, которые можно измерить совершенно точно. Эти состояния измеряются вдоль любой оси прибором, направленным вдоль этой оси в положительном направлении, а так же перевернутым на
.Если мы измерили спин для частицы в любом направлении и получили
, то измерение в противоположном направлении всегда даст
. И вообще, сколько бы раз мы после этого ни измеряли два эти состояния вдоль именно этой выбранной прямой, переворачивая прибор то прямо, то обратно вдоль нее, измерения всегда дают этот результат: прямо
, обратно
. Никакой вероятности здесь нет, результат измерения всегда точно определен.
Но если мы захотим измерить спин в направлении, перпендикулярном этой прямой, то это не будет базисным состоянием. Следовательно, таким измерением мы меняем базис (выбираем новую прямую, перпендикулярную исходной), а результат измерения будет случайным. Разумеется, повторное измерение в этом базисе (вдоль этой новой выбранной прямой) в положительную отрицательную сторону уже будет совершенно точным и не случайным, как и вдоль старой прямой (в старом базисе). Но вот измерения, которые приводят к смене базиса - они будут давать случайный результат (не в смысле того, что вероятности получения
и
будут равны, конечно. Эти вероятности как раз строго вычисляются в зависимости от взаимного расположения старого и нового базисов и результатов измерения в старом базисе).
В некотором смысле измерить не базисное состояние системы вообще невозможно. Можно лишь вычислить вероятность того, какой результат измерения нового базисного состояния мы получим в новом базисе. Т.е. если очередное измеряемое состояние - базисное, то базис измерения не меняется, и мы получаем точно такой же результат, как и в предыдущем измерении в этом базисе. Если же измеряемое состояние не базисное, то при таком измерении базис переопределяется так, что это измеряемое состояние становится новым базисным, а результат измерения по сути отражает измерение нового базисного состояния в новом базисе. Случайность же этого измерения следует из того, что произошла смена базиса.
Т.е. у системы в общем случае есть
базисных состояний, и мы знаем, как их измерять (это может быть сложнее, чем просто перевернуть прибор на
. Скажем, может быть, его нужно будет повернуть только на
). Если измерять только их, то базис остается без изменений, и все повторные измерения дают повторяемые результаты без случайности. Любые другие измерения приводят просто к переопределению базиса, и в новом базисе мы снова можем точно и повторяемо измерять все базисные состояния. Но измерения, которые приводят к смене базиса - они всегда содержат случайность.
Правильно ли я это понимаю?