granit201z, вы разбирались с известными экспериментами (нас они интересуют в мысленном варианте) "квантовый ластик" и "квантовый ластик с отложенным выбором"? Поняли почему там не получается интерференционной картины? Можете объяснить в чём отличие вашей схемы?
-- 29.12.2022, 20:20 --они попадают на общий детектор и информация о том, через какой down-converter они прошли не сохраняется
Конкретно вот это не так-то просто сделать. Нужно два пучка света свести в один. Для этого нужно использовать полупрозрачное зеркало, будут лишние варианты распространения фотонов, лишнее влияние одного пучка на другой. И необходимо детально анализировать какие в итоге будут амплитуды.
Попытаюсь описать ситуацию в общем виде. Вот есть состояние

, где

и

— это, соответственно, верхний и нижний путь. Это состояние, когда мы не знаем пути и, соответственно, есть интерференция. Дальше мы раздваиваем "фотоны", получается состояние

. Интерференции не будет —

и

мешают. Чтобы вернуть интерференцию, надо свести

и

в какое-то одно состояние ("одна точка на экране"), чтобы его можно было вынести за скобку и вернуть интерференцию. Но нет такого унитарного оператора

, чтобы два разных состояния превратились в одно:

,

. Лучшее чего можно достичь — это

,

. И вот эти члены с

портят простую картину и мешают передавать информацию.