Из дифференциального исчисления одной переменной для практики нужно:
- понимать физический смысл производной (если

время и

- пройденный путь, то

- мгновенная скорость, и т.д.)
- понимать геометрический смысл производной (тангенс угла наклона касательной)
- уметь брать производные (таблица производных и правила дифференцирования)
- уметь исследовать функции с помощью производной (точки экстремума и т.д.)
Из интегрального исчисления одной переменной для практики нужно:
- понимать физический смысл интеграла (если

время и

- мгновенная скорость, то

- путь, пройденный между моментами

и

)
- понимать геометрический смысл интеграла (площадь под кривой)
- уметь брать стандартные интегралы (таблица первообразных, формула Ньютона-Лейбница, замена переменной, интегрирование по частям).
Почти всё это в советские времена проходили в школе, не знаю, как сейчас. Ну или можно взять любой учебник анализа для физиков или инженеров, хоть Ильина-Позняка (упаси Вас б-г браться за учебники для математиков типа Зорича). В учебнике будут не только готовые рецепты, но и теоремы, объясняющие, почему все это работает, но для практики их можно пока опустить, подтянув потом "для теории".
Очень полный ответ, спасибо!
Но, если я не слишком навязываюсь:) , то я уточню кое-что:
1) На счёт того Вы написали о том, что мне необходимо знать для практики, я уже немного подумал - цели ясны
2) Сейчас скачал Ильина - Познякова, посмотрел. Если у меня: 1. довольно хорошие знания по физике школьной (профильные); 2. по математике с матанализом школьным не очень; 3. С остальной школьной математикой тоже крепкие знания - то необходима ли мне подготовка перед изучением этого учебника или того, что там написано, хватит?
3) Какие пособия я могу использовать для упражнений? (Сложилось впечатление, что для практики это необходимо)
4) Если вдруг не подойдёт стиль учебника или если я захочу где-то ещё прочесть тему (у меня такое часто бывает), что ещё вы можете посоветовать?
Заранее спасибо :)
(Позже задам ещё вопроса два и все будет ясно)