2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4
 
 Re: Каменные биты.
Сообщение09.08.2013, 16:25 
Заслуженный участник
Аватара пользователя


01/08/06
3151
Уфа
nikvic писал(а):
На какие слагаемые Первый разбивает свои 46 сообщений?
Это, конечно, не очень вежливо, но можно пока я отвечу?
У меня получается такая разбивка:
Кинув 1 камень, Первый имеет возможность передать 24 сообщения.
2 — 12
3 — 6
4 — 3
5 — 1
Итого 46.

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение09.08.2013, 17:09 
Заслуженный участник
Аватара пользователя


06/04/10
3152
worm2 в сообщении #753545 писал(а):
nikvic писал(а):
На какие слагаемые Первый разбивает свои 46 сообщений?
Это, конечно, не очень вежливо, но можно пока я отвечу?
У меня получается такая разбивка:
Кинув 1 камень, Первый имеет возможность передать 24
....
Итого 46.

Так, имеем 45 и 24. У меня там 14 - значит, нужна ещё разбивка для 45, когда у второго 24.

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение09.08.2013, 17:34 
Заслуженный участник


28/04/09
1933
worm2
worm2 в сообщении #753275 писал(а):
Подтверждаю таблицу EtCetera.
Замечательно!
worm2 в сообщении #753405 писал(а):
Я, в отличие от EtCetera, интерпретирую как ноль камней, так и один камень, как возможность передачи не нуля, а одного сообщения
Да, так проще, от прежней схемы я уже отказался.
worm2 в сообщении #753405 писал(а):
Вот таблица первых $f_n(m)$
Да, значения совпадают.

nikvic
nikvic в сообщении #753162 писал(а):
Геометрически каждый сеанс связи может быть представлен как ломаная с шагами вверх и вправо.
Интересное представление.
nikvic в сообщении #753162 писал(а):
Было бы интересно понять, как устроены "траектории" сеансов для заданных объёмов передачи.
Вы имеете в виду "пучок" траекторий?
nikvic в сообщении #753497 писал(а):
Первое разночтение у нас с Вами - строка 46, столбец 45. Вам хватает 14 камней, мне нужно 15.
Как Вы узнали?
nikvic в сообщении #753497 писал(а):
Ваша таблица не захватывает это место.
Вот табличка покрупнее, если Вы об $n(f,s)$ (полностью картинка откроется при щелчке на ней):
Изображение
nikvic в сообщении #753497 писал(а):
На какие слагаемые Первый разбивает свои 46 сообщений?
У меня так же, как и у worm2:
worm2 в сообщении #753545 писал(а):
Кинув 1 камень, Первый имеет возможность передать 24 сообщения.
2 — 12
3 — 6
4 — 3
5 — 1
Итого 46.
nikvic в сообщении #753557 писал(а):
Так, имеем 45 и 24. У меня там 14 - значит, нужна ещё разбивка для 45, когда у второго 24.
За 13 камней? Все то же самое, только для 1 камня в первый бросок имеется 23 варианта, а не 24.

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение09.08.2013, 18:18 
Заслуженный участник
Аватара пользователя


06/04/10
3152
Ок, добрался до своей дырочки: перебор в позиции 24,23.

 Профиль  
                  
 
 Posted automatically
Сообщение04.11.2013, 01:49 
Основатель
Аватара пользователя


11/05/05
4313
 i  Тема перемещена из форума «Олимпиадные задачи (М)» в форум «Олимпиадные задачи (CS)»
Причина переноса: не указана.

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение09.09.2016, 10:55 


09/09/16
5
venco в сообщении #751350 писал(а):
Каждый формирует семь бросков используя максимум 13 камней - это $C^{13}_7=1716$ комбинаций. Второй может свои 13 камней использовать за шесть бросков, добавив к своим комбинациям ещё $C^{12}_5=792$, получив в сумме 2508 комбинаций. Первый этого сделать не может, т.к. если второму нужно 7 бросков, то первому придётся бросить лишний камень в 7-ой раз, и второму на последний бросок достанется на один камень меньше.


Только сейчас я добрался до этой задачи :-). Извините, но почему у Вас число сочетаний из 13 по 7 ? Ведь в условии сказано, что за один подход необходимо бросить КАК МИНИМУМ ОДИН КАМЕНЬ. Это означает, что на 7 бросках свободно распоряжаться можно только 6 камнями. А 7 камней (по одному на бросок) должны быть брошены по-любому и информации этот факт нести не может.

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение10.09.2016, 19:20 
Заслуженный участник


28/04/09
1933
SergeyM1972
$\binom{13}{7}=\binom{13}{6}$. С какой стороны ни посмотри...

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение10.09.2016, 21:39 


09/09/16
5
EtCetera в сообщении #1150468 писал(а):
SergeyM1972
$\binom{13}{7}=\binom{13}{6}$. С какой стороны ни посмотри...

Общеизвестно, что M одинаковых шаров можно разложить по N разным ящикам C(N+M-1,M) числом комбинаций. Поэтому С из 12-ти, а не из 13-ти! Другими словами, распределить 6 шаров по 7 броскам можно C(12,6)=924 вариантами. Вот о чем я.

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение25.05.2022, 15:03 
Заслуженный участник
Аватара пользователя


01/08/06
3151
Уфа
Внезапно в OEIS обнаружилась последовательность (максимального количества сообщений, которыми могут обменяться оба агента): A332755.
Автор, некий Peter J. Taylor, назвал её так: "Lapidary numbers", т.е. "Каменные числа".
Последовательность заведена в 2020 г., соответствующая статья автора (которую я не смог разыскать) датирована 2018 годом.
Ой, нет, это я плохо смотрел. Там есть ссылка на препринт 2014 года. В препринте, в свою очередь, в качестве первоисточника указывается обсуждение в русскоязычном форуме от 2011 года:
https://braingames.ru/index.php?path=co ... puzzle=475

По видимому, автор познакомился с задачей на stackexchange в 2014 году, где также приводится вышеупомянутый первоисточник:
https://puzzling.stackexchange.com/ques ... -river/630
там же её решил, потом оформил решение в виде статьи и последовательности.

 Профиль  
                  
 
 Re: Каменные биты.
Сообщение14.11.2022, 19:28 
Аватара пользователя


05/06/08
479
venco в сообщении #751350 писал(а):
Каждый формирует семь бросков используя максимум 13 камней - это $C^{13}_7=1716$ комбинаций. Второй может свои 13 камней использовать за шесть бросков, добавив к своим комбинациям ещё $C^{12}_5=792$, получив в сумме 2508 комбинаций. Первый этого сделать не может, т.к. если второму нужно 7 бросков, то первому придётся бросить лишний камень в 7-ой раз, и второму на последний бросок достанется на один камень меньше.

Самок интересное, $C^{13}_6=1716$.
Откуда появляются 5 лишних бросков и 12 лишних камней $C^{12}_5=792$?
Может сходу не понял условия задачи?

-- Пн ноя 14, 2022 20:36:10 --

Да, проблема с пониманием условия задачи. Предполагается, что существует ситуация, когда первый дает возможность второму передать цифру больше 1716ти.
Очень практично.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 55 ]  На страницу Пред.  1, 2, 3, 4

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Evgeniy101


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group