Вот ещё одна интерпретация, по праву заслуживающая внимания.
Она основана на TSFV — формализме двух векторов состояния, явно-симметричной относительно отражения времени форме квантовой механики. Кстати, именно этот формализм в своё время помог изобрести слабые измерения.
Итак, примем в качестве исходного постулата, что онтологическое состояние — это неортогональная пара
нормированных векторов в гильбертовом пространстве.
Номология интерпретации (да, я выучил новое философское слово) даётся обычным уравнением Шрёдингера, только продублированным:
Из пары бра и кет векторов можно составить матрицу плотности
но данная матрица плотности — чисто онтологический объект, она не имеет вероятностной интерпретации, и описывает
чистое состояние, а не смешанное. Также она не эрмитова. Тем не менее, она имеет два важных свойства «обычной» матрицы плотности: во-первых она имеет замкнутую динамику (обычного вида), и во-вторых она может быть (привычным образом) редуцирована до матрицы плотности подсистемы и, если эта подсистема имеет замкнутую динамику, то эта редуцированная матрица плотности также будет иметь замкнутую динамику. Такие свойства позволяют выдвинуть следующее предположение.
Назовём матрицу плотности квазиклассичной, если в некотором базисе все её элементы, кроме единственного единичного элемента на диагонали, равны нулю (с достаточной точностью). Тогда,
если состояние системы таково, что редуцированная матрица плотности макроскопической подсистемы квазиклассична, то такой подсистеме можно сопоставить соответствующее классическое состояние и такая подсистема будет вести себя классически.
Это предположение не является постулатом и должно быть обосновано самосогласованным вычислением. Именно, должно быть показано, что такие подсистемы ведут себя как классические и их матрица плотности остаётся квазиклассической.
В качестве примера самосогласованного вычисления рассмотрим процесс измерения (иначе говоря, эксперимент с котом Шрёдингера). Рассмотрим воображаемую вселенную, состоящую из квантовой системы с двумя состояниями, макроскопического прибора и нерелевантного окружения, которое нужно для моделирования декогеренции. Прибор имеет память для хранения результатов двух измерений. Процессы неразрушающего измерения и декогеренции мы для простоты представим происходящими последовательно, хотя в действительности они происходят одновременно.
Наша модельная вселенная существует конечное время. В начальный момент
система изолирована от прибора, в момент
начинается первое измерение, в момент
оно заканчивается и затем пока происходит декогеренция (до
) и далее до
система вновь изолирована. Затем до момента
происходит второе измерение, после чего система опять изолируется пока происходит декогеренция (до
) и далее до момента
, когда вселенная прекращает существование.
Используя хорошо известные схемы фон Неймановского неразрушающего измерения и декогеренции, мы можем выписать следующие выражения для кет вектора вселенной в ключевые моменты:
где
— нормированные состояния системы,
,
— базисные состояния системы,
— отсутствие результата измерения в памяти прибора,
и
— результаты измерения,
— нормированные состояния окружения.
Причём ключевой особенностью состояний окружения является свойство
для
.
Теперь необходимо проследить эволюцию бра вектора. Его особенность в том, что в то время как для кет вектора мы постулировали начальное значение
, а затем проследили его эволюцию до конечного времени, используя уравнение Шрёдингера, для бра вектора мы поступим ровно наоборот: постулируем его конечное значение, и проследим эволюцию назад во времени.
Итак, пусть в нашей вселенной
Зная эволюцию кет вектора и тот факт, что гамильтониан для бра и кет векторов общий,
последовательно вычисляем
При этом также мы использовали известное свойство симметрии декогеренции относительно обращения времени, то есть то, что этот механизм одинаково хорошо работает и в будущее и в прошлое.
Вычислим редуцированную матрицу плотности прибора в моменты после измерения и декогеренции:
Таким образом, действительно оказывается, что в рассмотренном примере прибор переходит от классического состояния к классическому и показания прибора имеют строго определённое значение (которое, как нетрудно заметить, введено в модель конечным бра состоянием).
Каким образом появляются вероятности? В силу термодинамических причин мы не можем знать бра вектор, таким образом наше обычное квантомеханическое описание с одним вектором состояния является неполным.
Как и в классической статистике, необходимо постулировать распределение вероятностей. То есть нужен квантовый Ментакулус, который скажет как же правильно считать вероятности. Что он скажет нам, конечно, уже известно: правило Борна.
Данная интерпретация имеет множество хороших свойств: она проста, использует стандартный квантовомеханический формализм (гильбертово пространство, уравнение Шрёдингера), имеет много общего с многомировой интерпретацией, но использует привычный классический подход к вероятностям, в сильнейшей степени опирается на декогеренцию, явно демонстрирует как вектор состояния может быть отчасти онтологическим, а отчасти эпистемологическим (а это почти необходимое свойство последовательной квантовой теории — почти, потому что есть лазейки в соответствующих теоремах, но крайне узкие), а также явную симметричность квантовой механики относительно обращения времени.