2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 14:48 


07/08/14
4231
Квадрат модуля амплитуды вероятности - это вероятность того, что частица будет обнаружена в определенной точке пространства в определенное время.
Правильно я понимаю, что $1-\text{квадрат модуля амплитуды вероятности}$ - вероятность того, что частица НЕ будет обнаружена в определенной точке пространства в определенное время, то есть - частота событий не обнаружения частицы (что бы это ни значило)?
По-моему, да.

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 15:14 
Заслуженный участник
Аватара пользователя


26/01/14
4891
upgrade в сообщении #1563256 писал(а):
Квадрат модуля амплитуды вероятности - это вероятность того, что частица будет обнаружена в определенной точке пространства в определенное время.
Не вероятность, а плотность вероятности.
Как правило (за исключением вырожденных случаев), вероятность обнаружить частицу точно в определённой точке равна нулю. А плотность вероятности может быть не равна нулю.
Вероятность обнаружить частицу в некоторой области равна интегралу от плотности вероятности (т.е. от квадрата модуля амплитуды вероятности) по данной области.
Величина же
upgrade в сообщении #1563256 писал(а):
$1-\text{квадрат модуля амплитуды вероятности}$
никакого физического смысла не имеет.

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 15:39 


07/08/14
4231
Mikhail_K в сообщении #1563259 писал(а):
Вероятность обнаружить частицу в некоторой области равна интегралу от плотности вероятности (т.е. от квадрата модуля амплитуды вероятности) по данной области.
ДА, поправлюсь: не обнаружить соответственно - единица минус этот интеграл.
Mikhail_K в сообщении #1563259 писал(а):
никакого физического смысла не имеет.
Но интерференция (какая-то непонятная) такой величины ведь тоже будет.

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 16:02 
Заслуженный участник


18/09/21
1768
Можно было бы рассмотерть "1 - вероятность".
"1 - плотность вероятности" не имеет смысла, т.к. "1" - безразмерно, "плотность вероятности" - размерно (1/объём).

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 17:15 
Заслуженный участник
Аватара пользователя


26/01/14
4891
upgrade в сообщении #1563260 писал(а):
единица минус этот интеграл
Единица минус интеграл по некоторой области = интеграл по дополнению к этой области.
Потому что интеграл по всему пространству равен единице.

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 17:45 
Заслуженный участник


29/09/14
1265
upgrade
Квадрат модуля в вашем вопросе роли не играет. Похожий по смыслу вопрос можно задать просто о вероятностях, как уже сказали уважаемые zykov и Mikhail_K:

Допустим, опыт (с накоплением статистики) ставится так, что некая штуковина может обнаруживаться с вероятностью $W_1$ в месте "номер 1", либо - с суммарной вероятностью $W_2$ эта штуковина может обнаруживаться в других местах. Тогда нормированные вероятности $W_1$ и $W_2$ подчиняются нормировочному равенству:

$W_1+W_2=1.$

Ваш вопрос имеет такой смысл: какой смысл имеет величина $1-W_1\,$ если $W_1$ есть вероятность обнаружить штуковину в месте "1"? Ответ виден из нормировочного равенства:

$1-W_1=W_2,$

т.е. это есть вероятность обнаружить штуковину в других местах, отличных от места "1".

Словами же "НЕ будет обнаружена" вроде допускается возможность и того, что штуковина вообще нигде не будет обнаружена. Но "нигде необнаружение" противоречит нормировке вероятностей на единицу, означающей, что штуковина заведомо в опыте присутствует, по ходу опыта никуда не исчезает и поэтому с вероятностью $1$ где-нибудь да обнаружится.

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 17:59 


07/08/14
4231
Cos(x-pi/2)
Да. Спасибо за разъяснение собственного вопроса :-). Именно это я имел ввиду, с некоторым уточнением:
Cos(x-pi/2) в сообщении #1563269 писал(а):
т.е. это есть вероятность обнаружить штуковину в других местах, отличных от места "1".
Это да (с оговоркой ниже).
Cos(x-pi/2) в сообщении #1563269 писал(а):
Словами же "НЕ будет обнаружена" вроде допускается возможность и того, что штуковина вообще нигде не будет обнаружена.
А это нет.
upgrade в сообщении #1563256 писал(а):
вероятность того, что частица НЕ будет обнаружена в определенной точке пространства в определенное время, то есть - частота событий не обнаружения частицы (что бы это ни значило)?
Частота не обнаружения частицы в месте "1".
Необнаружение в опыте в точке (лучше, наверное - в объеме) пространства - тоже событие, и ему как событию можно приписать вероятность (т.е. здесь нас не интересует есть где-то частица или нет, нас интересует только результат опыта - обнаружили частицу или нет).
Т.е. модель с монеткой была бы следующая:
вероятность обнаружения решки - $0,5$, вероятность необнаружения решки - $0,5$, обнаружение орла - с.в., которая коррелирует с необнаружением решки и только.
Оговорка:
вероятность обнаружить штуковину в других местах равна вероятности не обнаружить в месте "1" потому что с.в. необнаружения коррелирует с с.в. обнаружения в других местах.

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 21:10 
Заслуженный участник
Аватара пользователя


01/09/13
4711
upgrade в сообщении #1563270 писал(а):
Необнаружение в опыте в точке (лучше, наверное - в объеме) пространства - тоже событие

Это не событие. Как минимум до тех пор, пока не оговорены все исходы... а при этом событием уже будет "обнаружение где угодно кроме..."

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 22:19 


07/08/14
4231
Geen в сообщении #1563286 писал(а):
Это не событие. Как минимум до тех пор, пока не оговорены все исходы...
Производим измерение, у него два исхода - есть штуковина, нет штуковины.
Ничем наличие взаимодействия с прибором (обнаружение частицы), как исход опыта, принципиально не отличается от отсутствия.

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение22.08.2022, 23:13 
Заслуженный участник
Аватара пользователя


01/09/13
4711
upgrade в сообщении #1563289 писал(а):
Производим измерение

вот тут подробнее, пожалуйста.

например, бросаем кубик и успешным измерением считаем "обнаружение" 6-ки. Но в общем случае, к числу неуспехов надо отнести так же и случаи когда: а) забыли бросить кубик; б) чайка схватила кубик и улетела с ним; в) прилетела комета, и некому было что-либо обнаруживать; г)....

 Профиль  
                  
 
 Re: 1 - квадрат модуля амплитуды вероятности
Сообщение23.08.2022, 08:02 


07/08/14
4231
Geen
Общий случай - кубик увидели (т.е. грань в эксперименте - откуда считывать число, есть) но на одной из граней шестерка есть, а на других или вообще ничего нет или не шестерка.
А исчезновение кубика - это за рамками опыта, т.к. измерение не производится.
Вероятность появления вместо шестерки других чисел равна вероятности непоявления шестерки не потому что это полная группа событий. Полная группа - появление и непоявление шестерки на грани кубика при измерении.
Мы, когда не обнаруживаем шестерку, не делаем вывод что она есть где-то на других гранях, так как ни текущий эксперимент ни уже сделанные эксперименты об этом вообще ничего не говорят. Шестерка есть где-то на кубике, потому что появлялась в прошлых опытах - это домысливание уже.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 11 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Gleb1964


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group